These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 15379219)

  • 1. BESA source coherence: a new method to study cortical oscillatory coupling.
    Hoechstetter K; Bornfleth H; Weckesser D; Ille N; Berg P; Scherg M
    Brain Topogr; 2004; 16(4):233-8. PubMed ID: 15379219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics.
    Srinivasan R; Winter WR; Ding J; Nunez PL
    J Neurosci Methods; 2007 Oct; 166(1):41-52. PubMed ID: 17698205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A test of brain electrical source analysis (BESA): a simulation study.
    Miltner W; Braun C; Johnson R; Simpson GV; Ruchkin DS
    Electroencephalogr Clin Neurophysiol; 1994 Oct; 91(4):295-310. PubMed ID: 7523079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical EEG components that reflect inverse effectiveness during visuotactile integration processing.
    Kanayama N; Kimura K; Hiraki K
    Brain Res; 2015 Feb; 1598():18-30. PubMed ID: 25514335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study.
    Babiloni C; Brancucci A; Vecchio F; Arendt-Nielsen L; Chen AC; Rossini PM
    Clin Neurophysiol; 2006 May; 117(5):1000-8. PubMed ID: 16516546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instantaneous EEG coherence analysis during the Stroop task.
    Schack B; Chen AC; Mescha S; Witte H
    Clin Neurophysiol; 1999 Aug; 110(8):1410-26. PubMed ID: 10454277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet-based estimation of EEG coherence during Chinese Stroop task.
    Liu X; Qi H; Wang S; Wan M
    Comput Biol Med; 2006 Dec; 36(12):1303-15. PubMed ID: 16289018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase shift invariant imaging of coherent sources (PSIICOS) from MEG data.
    Ossadtchi A; Altukhov D; Jerbi K
    Neuroimage; 2018 Dec; 183():950-971. PubMed ID: 30142449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of prior knowledge in brain electromagnetic source analysis.
    Scherg M; Berg P
    Brain Topogr; 1991; 4(2):143-50. PubMed ID: 1793688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of MEG source reconstruction method on source-space connectivity estimation: A comparison between minimum-norm solution and beamforming.
    HincapiƩ AS; Kujala J; Mattout J; Pascarella A; Daligault S; Delpuech C; Mery D; Cosmelli D; Jerbi K
    Neuroimage; 2017 Aug; 156():29-42. PubMed ID: 28479475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust EEG/MEG Based Functional Connectivity with the Envelope of the Imaginary Coherence: Sensor Space Analysis.
    Sanchez Bornot JM; Wong-Lin K; Ahmad AL; Prasad G
    Brain Topogr; 2018 Nov; 31(6):895-916. PubMed ID: 29546509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation.
    Bromm B; Chen AC
    Electroencephalogr Clin Neurophysiol; 1995 Jul; 95(1):14-26. PubMed ID: 7621766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiblock PLS model of cortico-cortical and corticomuscular interactions in Parkinson's disease.
    Chiang J; Wang ZJ; McKeown MJ
    Neuroimage; 2012 Nov; 63(3):1498-509. PubMed ID: 22982102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing spatially extended brain sources via enforcing multiple transform sparseness.
    Zhu M; Zhang W; Dickens DL; Ding L
    Neuroimage; 2014 Feb; 86():280-93. PubMed ID: 24103850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.
    Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M
    Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting abnormality: an EEG and MEG study of P50 and the auditory paired-stimulus paradigm.
    Edgar JC; Huang MX; Weisend MP; Sherwood A; Miller GA; Adler LE; CaƱive JM
    Biol Psychol; 2003 Dec; 65(1):1-20. PubMed ID: 14638286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic imaging of coherent sources: Studying neural interactions in the human brain.
    Gross J; Kujala J; Hamalainen M; Timmermann L; Schnitzler A; Salmelin R
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):694-9. PubMed ID: 11209067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined distributed source and single-trial EEG-fMRI modeling: application to effortful decision making processes.
    Esposito F; Mulert C; Goebel R
    Neuroimage; 2009 Aug; 47(1):112-21. PubMed ID: 19361566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping single-trial EEG records on the cortical surface through a spatiotemporal modality.
    Tsai AC; Liou M; Jung TP; Onton JA; Cheng PE; Huang CC; Duann JR; Makeig S
    Neuroimage; 2006 Aug; 32(1):195-207. PubMed ID: 16730194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conventional and wavelet coherence applied to sensory-evoked electrical brain activity.
    Klein A; Sauer T; Jedynak A; Skrandies W
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):266-72. PubMed ID: 16485755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.