These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Supercritical carbon dioxide: an inert solvent for catalytic hydrogenation? Burgener M; Ferri D; Grunwaldt JD; Mallat T; Baiker A J Phys Chem B; 2005 Sep; 109(35):16794-800. PubMed ID: 16853138 [TBL] [Abstract][Full Text] [Related]
3. The role of carbon dioxide in chemoselective hydrogenation of halonitroaromatics over supported noble metal catalysts in supercritical carbon dioxide. Ichikawa S; Tada M; Iwasawa Y; Ikariya T Chem Commun (Camb); 2005 Feb; (7):924-6. PubMed ID: 15700083 [TBL] [Abstract][Full Text] [Related]
4. Swelled plastics in supercritical CO2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation. Ohde H; Ohde M; Wai CM Chem Commun (Camb); 2004 Apr; (8):930-1. PubMed ID: 15069480 [TBL] [Abstract][Full Text] [Related]
5. Optimum tail length of fluorinated double-tail anionic surfactant for water/supercritical CO2 microemulsion formation. Sagisaka M; Koike D; Yoda S; Takebayashi Y; Furuya T; Yoshizawa A; Sakai H; Abe M; Otake K Langmuir; 2007 Aug; 23(17):8784-8. PubMed ID: 17637005 [TBL] [Abstract][Full Text] [Related]
6. Catalytic hydrogenation of polyaromatic hydrocarbon (PAH) compounds in supercritical carbon dioxide over supported palladium. Yuan T; Marshall WD J Environ Monit; 2007 Dec; 9(12):1344-51. PubMed ID: 18049773 [TBL] [Abstract][Full Text] [Related]
7. Continuous tuning of cadmium sulfide and zinc sulfide nanoparticle size in a water-in-supercritical carbon dioxide microemulsion. Fernandez CA; Wai CM Chemistry; 2007; 13(20):5838-44. PubMed ID: 17443835 [TBL] [Abstract][Full Text] [Related]
8. Stable colloidal dispersions of a lipase-perfluoropolyether complex in liquid and supercritical carbon dioxide. Adkins SS; Hobbs HR; Benaissi K; Johnston KP; Poliakoff M; Thomas NR J Phys Chem B; 2008 Apr; 112(15):4760-9. PubMed ID: 18363394 [TBL] [Abstract][Full Text] [Related]
9. General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2. Moisan S; Martinez V; Weisbecker P; Cansell F; Mecking S; Aymonier C J Am Chem Soc; 2007 Aug; 129(34):10602-6. PubMed ID: 17685528 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds. Anand M; Bell PW; Fan X; Enick RM; Roberts CB J Phys Chem B; 2006 Aug; 110(30):14693-701. PubMed ID: 16869575 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic aspects of dihydrogen activation and transfer during asymmetric hydrogenation in supercritical carbon dioxide. Lange S; Brinkmann A; Trautner P; Woelk K; Bargon J; Leitner W Chirality; 2000 Jun; 12(5-6):450-7. PubMed ID: 10824168 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulation of a reverse micelle self assembly in supercritical CO2. Lu L; Berkowitz ML J Am Chem Soc; 2004 Aug; 126(33):10254-5. PubMed ID: 15315432 [TBL] [Abstract][Full Text] [Related]
14. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Park YJ; Park JW; Jun CH Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521 [TBL] [Abstract][Full Text] [Related]
15. Supported polyethylene glycol stabilized platinum nanoparticles for chemoselective hydrogenation of halonitrobenzenes in scCO2. Cheng H; Meng X; He L; Lin W; Zhao F J Colloid Interface Sci; 2014 Feb; 415():1-6. PubMed ID: 24267322 [TBL] [Abstract][Full Text] [Related]
16. Phase behaviour of propane- and scCO(2)-microemulsions and their prominent role for the recently proposed foaming procedure POSME (Principle of Supercritical Microemulsion Expansion). Schwan M; Kramer LG; Sottmann T; Strey R Phys Chem Chem Phys; 2010 Jun; 12(23):6247-52. PubMed ID: 20431831 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical synthesis of a polypyrrole thin film with supercritical carbon dioxide as a solvent. Yan H; Sato T; Komago D; Yamaguchi A; Oyaizu K; Yuasa M; Otake K Langmuir; 2005 Dec; 21(26):12303-8. PubMed ID: 16343006 [TBL] [Abstract][Full Text] [Related]
18. Evidence that imidazolium-based ionic ligands can be metal(0)/nanocluster catalyst poisons in at least the test case of iridium(0)-catalyzed acetone hydrogenation. Ott LS; Campbell S; Seddon KR; Finke RG Inorg Chem; 2007 Nov; 46(24):10335-44. PubMed ID: 17975891 [TBL] [Abstract][Full Text] [Related]
19. Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium. Theyssen N; Hou Z; Leitner W Chemistry; 2006 Apr; 12(12):3401-9. PubMed ID: 16453367 [TBL] [Abstract][Full Text] [Related]
20. Hydrogenation reactions using scCO2 as a solvent in microchannel reactors. Kobayashi J; Mori Y; Kobayashi S Chem Commun (Camb); 2005 May; (20):2567-8. PubMed ID: 15900328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]