These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15379528)

  • 1. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions.
    Lauga E
    Langmuir; 2004 Sep; 20(20):8924-30. PubMed ID: 15379528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient electrophoresis of dielectric spheres.
    Keh HJ; Huang YC
    J Colloid Interface Sci; 2005 Nov; 291(1):282-91. PubMed ID: 15990107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method of submerged Stokeslets for slip flow about ensembles of particles.
    Zhao S; Povitsky A
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3790-801. PubMed ID: 19051936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric force and relative motion between two spherical particles in electrophoresis.
    Kang KH; Li D
    Langmuir; 2006 Feb; 22(4):1602-8. PubMed ID: 16460080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip.
    Goswami P; Chakraborty S
    Langmuir; 2010 Jan; 26(1):581-90. PubMed ID: 19894749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified slip boundary condition for fluid flows.
    Thalakkottor JJ; Mohseni K
    Phys Rev E; 2016 Aug; 94(2-1):023113. PubMed ID: 27627398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary conditions for fluids with internal orientational degrees of freedom: apparent velocity slip associated with the molecular alignment.
    Heidenreich S; Ilg P; Hess S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066302. PubMed ID: 17677352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement of colloidal particles in two-dimensional electric fields.
    Kim J; Garoff S; Anderson JL; Schlangen LJ
    Langmuir; 2005 Nov; 21(24):10941-7. PubMed ID: 16285757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sharkskin instability of polymer melt flows.
    Graham MD
    Chaos; 1999 Mar; 9(1):154-163. PubMed ID: 12779809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.