These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15379706)

  • 21. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies.
    Ducarme P; Rahman M; Brasseur R
    Proteins; 1998 Mar; 30(4):357-71. PubMed ID: 9533620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulations and modeling-assisted ToxR screening in deciphering 3D structures of transmembrane alpha-helical dimers: ephrin receptor A1.
    Volynsky PE; Mineeva EA; Goncharuk MV; Ermolyuk YS; Arseniev AS; Efremov RG
    Phys Biol; 2010 Mar; 7():16014. PubMed ID: 20228445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2448-59. PubMed ID: 10233062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate.
    Liepiņa I; Czaplewski C; Janmey P; Liwo A
    Biopolymers; 2003; 71(1):49-70. PubMed ID: 12712500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.
    Mori T; Miyashita N; Im W; Feig M; Sugita Y
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1635-51. PubMed ID: 26766517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffraction-based density restraints for membrane and membrane-peptide molecular dynamics simulations.
    Benz RW; Nanda H; Castro-Román F; White SH; Tobias DJ
    Biophys J; 2006 Nov; 91(10):3617-29. PubMed ID: 16950837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes.
    Heinrich F; Lösche M
    Biochim Biophys Acta; 2014 Sep; 1838(9):2341-9. PubMed ID: 24674984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale modeling of lipids and lipid bilayers.
    Lyubartsev AP
    Eur Biophys J; 2005 Dec; 35(1):53-61. PubMed ID: 16133633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembling of peptide/membrane complexes by atomistic molecular dynamics simulations.
    Esteban-Martín S; Salgado J
    Biophys J; 2007 Feb; 92(3):903-12. PubMed ID: 17085495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implicit Micelle Model for Membrane Proteins Using Superellipsoid Approximation.
    Mori T; Sugita Y
    J Chem Theory Comput; 2020 Jan; 16(1):711-724. PubMed ID: 31765139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides.
    Ulmschneider MB; Ulmschneider JP
    Mol Membr Biol; 2008 Apr; 25(3):245-57. PubMed ID: 18428040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study.
    Pimthon J; Willumeit R; Lendlein A; Hofmann D
    J Pept Sci; 2009 Oct; 15(10):654-67. PubMed ID: 19691017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties.
    Jensen MØ; Mouritsen OG; Peters GH
    Biophys J; 2004 Jun; 86(6):3556-75. PubMed ID: 15189854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers.
    Monje-Galvan V; Warburton L; Klauda JB
    Methods Mol Biol; 2019; 1949():325-339. PubMed ID: 30790265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validating lipid force fields against experimental data: Progress, challenges and perspectives.
    Poger D; Caron B; Mark AE
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1556-65. PubMed ID: 26850737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular simulations of antimicrobial peptides.
    Langham A; Kaznessis YN
    Methods Mol Biol; 2010; 618():267-85. PubMed ID: 20094870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulations of membrane proteins.
    Ash WL; Zlomislic MR; Oloo EO; Tieleman DP
    Biochim Biophys Acta; 2004 Nov; 1666(1-2):158-89. PubMed ID: 15519314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch.
    Kandasamy SK; Larson RG
    Biophys J; 2006 Apr; 90(7):2326-43. PubMed ID: 16428278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GridMAT-MD: a grid-based membrane analysis tool for use with molecular dynamics.
    Allen WJ; Lemkul JA; Bevan DR
    J Comput Chem; 2009 Sep; 30(12):1952-8. PubMed ID: 19090582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.