BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 15379985)

  • 1. Effects of a cysteinyl leukotriene receptor antagonist on eosinophil recruitment in experimental allergic rhinitis.
    Saito H; Morikawa H; Howie K; Crawford L; Baatjes AJ; Denburg E; Cyr MM; Denburg JA
    Immunology; 2004 Oct; 113(2):246-52. PubMed ID: 15379985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of montelukast on tissue inflammatory and bone marrow responses in murine experimental allergic rhinitis: interaction with interleukin-5 deficiency.
    Roa J; Morikawa H; Crawford L; Baatjes A; Duong M; Denburg JA
    Immunology; 2007 Nov; 122(3):438-44. PubMed ID: 17627772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glucocorticoid and cysteinyl leukotriene 1 receptor antagonist on CD(34+) hematopoietic cells in bone marrow of asthmatic mice.
    Mao H; Yin KS; Wang ZL; Li FY; Zhang XL; Liu CT; Lei S
    Chin Med J (Engl); 2004 Apr; 117(4):592-7. PubMed ID: 15109455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haemopoietic mechanisms in murine allergic upper and lower airway inflammation.
    Li J; Saito H; Crawford L; Inman MD; Cyr MM; Denburg JA
    Immunology; 2005 Mar; 114(3):386-96. PubMed ID: 15720440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of leukotrienes in allergic rhinitis.
    Peters-Golden M; Henderson WR
    Ann Allergy Asthma Immunol; 2005 Jun; 94(6):609-18; quiz 618-20, 669. PubMed ID: 15984591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency.
    Saito H; Matsumoto K; Denburg AE; Crawford L; Ellis R; Inman MD; Sehmi R; Takatsu K; Matthaei KI; Denburg JA
    J Immunol; 2002 Mar; 168(6):3017-23. PubMed ID: 11884474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Montelukast inhibition of resting and GM-CSF-stimulated eosinophil adhesion to VCAM-1 under flow conditions appears independent of cysLT(1)R antagonism.
    Robinson AJ; Kashanin D; O'Dowd F; Williams V; Walsh GM
    J Leukoc Biol; 2008 Jun; 83(6):1522-9. PubMed ID: 18332235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haemopoietic processes in allergic disease: eosinophil/basophil development.
    Gauvreau GM; Ellis AK; Denburg JA
    Clin Exp Allergy; 2009 Sep; 39(9):1297-306. PubMed ID: 19622087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-16 variability and modulation by antiallergic drugs in a murine experimental allergic rhinitis model.
    Akiyama K; Karaki M; Kobayshi R; Dobashi H; Ishida T; Mori N
    Int Arch Allergy Immunol; 2009; 149(4):315-22. PubMed ID: 19295235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of chemical mediators in eosinophil infiltration in allergic rhinitis in mice.
    Kayasuga R; Iba Y; Hossen MA; Watanabe T; Kamei C
    Int Immunopharmacol; 2003 Apr; 3(4):469-73. PubMed ID: 12689652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell factor can stimulate the formation of eosinophils by two types of murine eosinophil progenitor cells.
    Metcalf D; Mifsud S; Di Rago L
    Stem Cells; 2002; 20(5):460-9. PubMed ID: 12351816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cysteinyl leukotriene receptor antagonist on CD11b and CD23 expression in asthmatic children.
    Gagro A; Aberle N; Rabatić S; Ajduk J; Jelacić J; Dekaris D
    Clin Exp Allergy; 2004 Jun; 34(6):939-44. PubMed ID: 15196283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allergen-induced murine upper airway inflammation: local and systemic changes in murine experimental allergic rhinitis.
    Saito H; Howie K; Wattie J; Denburg A; Ellis R; Inman MD; Denburg JA
    Immunology; 2001 Oct; 104(2):226-34. PubMed ID: 11683963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effects of anti-inflammatory and anti-asthmatic agents on CD34+ hematopoietic cells in bone marrow of asthmatic mice].
    Mao H; Wang ZL; Liu CT; Yin KS; Yu YH; Deng YL
    Zhonghua Jie He He Hu Xi Za Zhi; 2004 Apr; 27(4):229-33. PubMed ID: 15144611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circulating eosinophil/basophil progenitors and nasal mucosal cytokines in seasonal allergic rhinitis.
    Linden M; Svensson C; Andersson M; Greiff L; Andersson E; Denburg JA; Persson CG
    Allergy; 1999 Mar; 54(3):212-9. PubMed ID: 10321556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis.
    Peters-Golden M; Gleason MM; Togias A
    Clin Exp Allergy; 2006 Jun; 36(6):689-703. PubMed ID: 16776669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged eosinophil production after allergen exposure in IFN-gammaR KO mice is IL-5 dependent.
    Zhao LL; Lötvall J; Lindén A; Tomaki M; Sjöstrand M; Bossios A
    Scand J Immunol; 2008 May; 67(5):480-8. PubMed ID: 18405326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid increase in bone-marrow eosinophil production and responses to eosinopoietic interleukins triggered by intranasal allergen challenge.
    Gaspar Elsas MI; Joseph D; Elsas PX; Vargaftig BB
    Am J Respir Cell Mol Biol; 1997 Oct; 17(4):404-13. PubMed ID: 9376115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antileukotriene treatment and allergic rhinitis-related cough in guinea pigs.
    Brozmanova M; Plevkova J; Bartos V; Plank L; Tatar M
    J Physiol Pharmacol; 2005 Sep; 56 Suppl 4():21-30. PubMed ID: 16204773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice.
    Southam DS; Widmer N; Ellis R; Hirota JA; Inman MD; Sehmi R
    J Allergy Clin Immunol; 2005 Jan; 115(1):95-102. PubMed ID: 15637553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.