These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15380081)

  • 1. SXI1alpha controls uniparental mitochondrial inheritance in Cryptococcus neoformans.
    Yan Z; Hull CM; Heitman J; Sun S; Xu J
    Curr Biol; 2004 Sep; 14(18):R743-4. PubMed ID: 15380081
    [No Abstract]   [Full Text] [Related]  

  • 2. The mating type-specific homeodomain genes SXI1 alpha and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans.
    Yan Z; Hull CM; Sun S; Heitman J; Xu J
    Curr Genet; 2007 Mar; 51(3):187-95. PubMed ID: 17186242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prezygotic and postzygotic control of uniparental mitochondrial DNA inheritance in Cryptococcus neoformans.
    Gyawali R; Lin X
    mBio; 2013 Apr; 4(2):e00112-13. PubMed ID: 23611907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1alpha.
    Hull CM; Davidson RC; Heitman J
    Genes Dev; 2002 Dec; 16(23):3046-60. PubMed ID: 12464634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environment factors can influence mitochondrial inheritance in the fungus Cryptococcus neoformans.
    Yan Z; Sun S; Shahid M; Xu J
    Fungal Genet Biol; 2007 May; 44(5):315-22. PubMed ID: 17092744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in Cryptococcus neoformans.
    Nishimura Y; Shikanai T; Kawamoto S; Toh-E A
    Sci Rep; 2020 Feb; 10(1):2468. PubMed ID: 32051468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.
    Wang Z; Wilson A; Xu J
    Fungal Genet Biol; 2015 Feb; 75():1-10. PubMed ID: 25577978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans.
    Jung KW; Yang DH; Maeng S; Lee KT; So YS; Hong J; Choi J; Byun HJ; Kim H; Bang S; Song MH; Lee JW; Kim MS; Kim SY; Ji JH; Park G; Kwon H; Cha S; Meyers GL; Wang LL; Jang J; Janbon G; Adedoyin G; Kim T; Averette AK; Heitman J; Cheong E; Lee YH; Lee YW; Bahn YS
    Nat Commun; 2015 Apr; 6():6757. PubMed ID: 25849373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniqueness of the mating system in Cryptococcus neoformans.
    McClelland CM; Chang YC; Varma A; Kwon-Chung KJ
    Trends Microbiol; 2004 May; 12(5):208-12. PubMed ID: 15120139
    [No Abstract]   [Full Text] [Related]  

  • 10. Uniparental mitochondrial transmission in sexual crosses in Cryptococcus neoformans.
    Xu J; Ali RY; Gregory DA; Amick D; Lambert SE; Yoell HJ; Vilgalys RJ; Mitchell TG
    Curr Microbiol; 2000 Apr; 40(4):269-73. PubMed ID: 10688697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial inheritance in haploid x non-haploid crosses in Cryptococcus neoformans.
    Skosireva I; James TY; Sun S; Xu J
    Curr Genet; 2010 Apr; 56(2):163-76. PubMed ID: 20127336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance.
    Paul S; Doering TL; Moye-Rowley WS
    Fungal Genet Biol; 2015 Jan; 74():1-9. PubMed ID: 25445311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual development in Cryptococcus neoformans requires CLP1, a target of the homeodomain transcription factors Sxi1alpha and Sxi2a.
    Ekena JL; Stanton BC; Schiebe-Owens JA; Hull CM
    Eukaryot Cell; 2008 Jan; 7(1):49-57. PubMed ID: 17993575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in mitochondrial genome organization of Cryptococcus neoformans strains.
    Litter J; Keszthelyi A; Hamari Z; Pfeiffer I; Kucsera J
    Antonie Van Leeuwenhoek; 2005; 88(3-4):249-55. PubMed ID: 16284931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction fragment polymorphism in mitochondrial DNA of Cryptococcus neoformans.
    Varma A; Kwon-Chung KJ
    J Gen Microbiol; 1989 Dec; 135(12):3353-62. PubMed ID: 2576873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognate Site Identifier analysis reveals novel binding properties of the Sex Inducer homeodomain proteins of Cryptococcus neoformans.
    Stanton BC; Giles SS; Kruzel EK; Warren CL; Ansari AZ; Hull CM
    Mol Microbiol; 2009 Jun; 72(6):1334-47. PubMed ID: 19486297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA interference in the pathogenic fungus Cryptococcus neoformans.
    Liu H; Cottrell TR; Pierini LM; Goldman WE; Doering TL
    Genetics; 2002 Feb; 160(2):463-70. PubMed ID: 11861553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial DNA polymorphisms in the human pathogenic fungus Cryptococcus neoformans.
    Xu J
    Curr Genet; 2002 Apr; 41(1):43-7. PubMed ID: 12073099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of the sex-determining gene
    Yan Z; Li Z; Yan L; Yu Y; Cheng Y; Chen J; Liu Y; Gao C; Zeng L; Sun X; Guo L; Xu J
    Mob DNA; 2018; 9():24. PubMed ID: 30026817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes.
    Goins CL; Gerik KJ; Lodge JK
    Fungal Genet Biol; 2006 Aug; 43(8):531-44. PubMed ID: 16714127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.