These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
996 related articles for article (PubMed ID: 15380482)
1. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482 [TBL] [Abstract][Full Text] [Related]
2. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury. Sharma HS Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567 [TBL] [Abstract][Full Text] [Related]
3. The neuroprotective effects of Reg-2 following spinal cord transection injury. Fang M; Wang J; Huang JY; Ling SC; Rudd JA; Hu ZY; Yew DT; Han S Anat Rec (Hoboken); 2011 Jan; 294(1):24-45. PubMed ID: 21157914 [TBL] [Abstract][Full Text] [Related]
4. Chronic alterations in the cellular composition of spinal cord white matter following contusion injury. Rosenberg LJ; Zai LJ; Wrathall JR Glia; 2005 Jan; 49(1):107-20. PubMed ID: 15390101 [TBL] [Abstract][Full Text] [Related]
5. Dorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats. Baker KA; Nakashima S; Hagg T Exp Neurol; 2007 May; 205(1):82-91. PubMed ID: 17316612 [TBL] [Abstract][Full Text] [Related]
6. Glial cell line-derived neurotrophic factor added to a sciatic nerve fragment grafted in a spinal cord gap ameliorates motor impairments in rats and increases local axonal growth. Guzen FP; de Almeida Leme RJ; de Andrade MS; de Luca BA; Chadi G Restor Neurol Neurosci; 2009; 27(1):1-16. PubMed ID: 19164849 [TBL] [Abstract][Full Text] [Related]
8. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Hains BC; Saab CY; Lo AC; Waxman SG Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836 [TBL] [Abstract][Full Text] [Related]
9. Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature. Basso DM; Beattie MS; Bresnahan JC Restor Neurol Neurosci; 2002; 20(5):189-218. PubMed ID: 12515895 [TBL] [Abstract][Full Text] [Related]
10. Simvastatin treatment improves functional recovery after experimental spinal cord injury by upregulating the expression of BDNF and GDNF. Han X; Yang N; Xu Y; Zhu J; Chen Z; Liu Z; Dang G; Song C Neurosci Lett; 2011 Jan; 487(3):255-9. PubMed ID: 20851742 [TBL] [Abstract][Full Text] [Related]
11. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Cayli SR; Kocak A; Yilmaz U; Tekiner A; Erbil M; Ozturk C; Batcioglu K; Yologlu S Eur Spine J; 2004 Dec; 13(8):724-32. PubMed ID: 15232723 [TBL] [Abstract][Full Text] [Related]
12. Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Saganová K; Orendácová J; Cízková D; Vanický I Neurosci Lett; 2008 Mar; 433(3):246-9. PubMed ID: 18280653 [TBL] [Abstract][Full Text] [Related]
13. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Ye JH; Houle JD Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447 [TBL] [Abstract][Full Text] [Related]
14. [Protective effect of exogenous glial cell line derived neurotrophic factor on neurons after sciatic nerve injury in rats]. Chen ZY; Cao L; Lu CL; He C; Bao X Sheng Li Xue Bao; 2000 Aug; 52(4):295-300. PubMed ID: 11951110 [TBL] [Abstract][Full Text] [Related]
15. Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat. Cao Q; Zhang YP; Iannotti C; DeVries WH; Xu XM; Shields CB; Whittemore SR Exp Neurol; 2005 Feb; 191 Suppl 1():S3-S16. PubMed ID: 15629760 [TBL] [Abstract][Full Text] [Related]
16. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Sayer FT; Oudega M; Hagg T Exp Neurol; 2002 May; 175(1):282-96. PubMed ID: 12009779 [TBL] [Abstract][Full Text] [Related]
17. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury. Conta AC; Stelzner DJ J Comp Neurol; 2004 Nov; 479(4):347-59. PubMed ID: 15514981 [TBL] [Abstract][Full Text] [Related]
18. Selected combination of neurotrophins potentiate neuroprotection and functional recovery following spinal cord injury in the rat. Sharma HS Acta Neurochir Suppl; 2010; 106():295-300. PubMed ID: 19812967 [TBL] [Abstract][Full Text] [Related]
19. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901 [TBL] [Abstract][Full Text] [Related]
20. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Rabchevsky AG; Fugaccia I; Turner AF; Blades DA; Mattson MP; Scheff SW Exp Neurol; 2000 Aug; 164(2):280-91. PubMed ID: 10915567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]