BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15380483)

  • 1. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis.
    Kaminski HJ; Li Z; Richmonds C; Lin F; Medof ME
    Exp Neurol; 2004 Oct; 189(2):333-42. PubMed ID: 15380483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia.
    Kaminski HJ; Kusner LL; Richmonds C; Medof ME; Lin F
    Exp Neurol; 2006 Dec; 202(2):287-93. PubMed ID: 16859686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.
    Wu X; Tuzun E; Saini SS; Wang J; Li J; Aguilera-Aguirre L; Huda R; Christadoss P
    Immunol Lett; 2015 Dec; 168(2):306-12. PubMed ID: 26493475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis.
    Losen M; Stassen MH; Martínez-Martínez P; Machiels BM; Duimel H; Frederik P; Veldman H; Wokke JH; Spaans F; Vincent A; De Baets MH
    Brain; 2005 Oct; 128(Pt 10):2327-37. PubMed ID: 16150851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraocular muscle susceptibility to myasthenia gravis: unique immunological environment?
    Soltys J; Gong B; Kaminski HJ; Zhou Y; Kusner LL
    Ann N Y Acad Sci; 2008; 1132():220-4. PubMed ID: 18567871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral administration of a dual analog of two myasthenogenic T cell epitopes down-regulates experimental autoimmune myasthenia gravis in mice.
    Paas-Rozner M; Dayan M; Paas Y; Changeux JP; Wirguin I; Sela M; Mozes E
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2168-73. PubMed ID: 10681457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new mouse model of autoimmune ocular myasthenia gravis.
    Yang H; Wu B; Tüzün E; Saini SS; Li J; Allman W; Higgs S; Xiao TL; Christadoss P
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5101-11. PubMed ID: 17962462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular and generalized myasthenia gravis induced by human acetylcholine receptor γ subunit immunization.
    Wu X; Tuzun E; Li J; Xiao T; Saini SS; Qi H; Allman W; Christadoss P
    Muscle Nerve; 2012 Feb; 45(2):209-16. PubMed ID: 22246876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades?
    Baggi F; Antozzi C; Toscani C; Cordiglieri C
    Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis.
    Tüzün E; Saini SS; Yang H; Alagappan D; Higgs S; Christadoss P
    J Neuroimmunol; 2006 May; 174(1-2):157-67. PubMed ID: 16527362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiology of myasthenia gravis.
    Hughes BW; Moro De Casillas ML; Kaminski HJ
    Semin Neurol; 2004 Mar; 24(1):21-30. PubMed ID: 15229789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis.
    MacLennan C; Beeson D; Buijs AM; Vincent A; Newsom-Davis J
    Ann Neurol; 1997 Apr; 41(4):423-31. PubMed ID: 9124798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of complement in experimental autoimmune myasthenia gravis.
    Kusner LL; Kaminski HJ
    Ann N Y Acad Sci; 2012 Dec; 1274(1):127-32. PubMed ID: 23252907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy.
    Korbelik M; Cecic I
    J Photochem Photobiol B; 2008 Oct; 93(1):53-9. PubMed ID: 18715798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction.
    Cole RN; Reddel SW; Gervásio OL; Phillips WD
    Ann Neurol; 2008 Jun; 63(6):782-9. PubMed ID: 18384168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection.
    Lin F; Kaminski HJ; Conti-Fine BM; Wang W; Richmonds C; Medof ME
    J Clin Invest; 2002 Nov; 110(9):1269-74. PubMed ID: 12417565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental autoimmune myasthenia gravis in the mouse.
    Wu B; Goluszko E; Huda R; Tüzün E; Christadoss P
    Curr Protoc Immunol; 2011 Nov; Chapter 15():Unit 15.23. PubMed ID: 22048803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental autoimmune myasthenia gravis in the mouse.
    Wu B; Goluszko E; Huda R; Tüzün E; Christadoss P
    Curr Protoc Immunol; 2013; Chapter 15():Unit 15.8.. PubMed ID: 23392639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased gene expression of acetylcholine receptor and myogenic factors in passively transferred experimental autoimmune myasthenia gravis.
    Asher O; Kues WA; Witzemann V; Tzartos SJ; Fuchs S; Souroujon MC
    J Immunol; 1993 Dec; 151(11):6442-50. PubMed ID: 8245477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.