These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15380664)

  • 1. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum.
    Faramarzi MA; Stagars M; Pensini E; Krebs W; Brandl H
    J Biotechnol; 2004 Sep; 113(1-3):321-6. PubMed ID: 15380664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida.
    Faramarzi MA; Brandl H
    FEMS Microbiol Lett; 2006 Jun; 259(1):47-52. PubMed ID: 16684101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp.
    Pradhan JK; Kumar S
    Waste Manag Res; 2012 Nov; 30(11):1151-9. PubMed ID: 22452961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification.
    Natarajan G; Ting YP
    Chemosphere; 2015 Oct; 136():232-8. PubMed ID: 26025187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery.
    Natarajan G; Ting YP
    Bioresour Technol; 2014; 152():80-5. PubMed ID: 24291311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum.
    Tay SB; Natarajan G; Rahim MN; Tan HT; Chung MC; Ting YP; Yew WS
    Sci Rep; 2013; 3():2236. PubMed ID: 23868689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cyanide and dissolved oxygen concentration on biological Au recovery.
    Kita Y; Nishikawa H; Takemoto T
    J Biotechnol; 2006 Jul; 124(3):545-51. PubMed ID: 16567012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toolkit Development for Cyanogenic and Gold Biorecovery Chassis
    Liow LT; Go MK; Chang MW; Yew WS
    ACS Synth Biol; 2020 Apr; 9(4):953-961. PubMed ID: 32160465
    [No Abstract]   [Full Text] [Related]  

  • 9. Biogenic production of cyanide and its application to gold recovery.
    Campbell SC; Olson GJ; Clark TR; McFeters G
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):134-9. PubMed ID: 11420652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal Biorecovery of Gold From E-waste.
    Bindschedler S; Vu Bouquet TQT; Job D; Joseph E; Junier P
    Adv Appl Microbiol; 2017; 99():53-81. PubMed ID: 28438268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of metals from waste printed circuit boards using bacterial isolates native to abandoned gold mine.
    Kumar A; Saini HS; Şengör S; Sani RK; Kumar S
    Biometals; 2021 Oct; 34(5):1043-1058. PubMed ID: 34213670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil.
    McGivney E; Gao X; Liu Y; Lowry GV; Casman E; Gregory KB; VanBriesen JM; Avellan A
    Environ Sci Technol; 2019 Feb; 53(3):1287-1295. PubMed ID: 30590926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification.
    Carepo MS; Azevedo JS; Porto JI; Bentes-Sousa AR; Batista Jda S; Silva AL; Schneider MP
    Genet Mol Res; 2004 Mar; 3(1):181-94. PubMed ID: 15100998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new strain for recovering precious metals from waste printed circuit boards.
    Ruan J; Zhu X; Qian Y; Hu J
    Waste Manag; 2014 May; 34(5):901-7. PubMed ID: 24630215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains.
    Madrigal-Arias JE; Argumedo-Delira R; Alarcón A; Mendoza-López MR; García-Barradas O; Cruz-Sánchez JS; Ferrera-Cerrato R; Jiménez-Fernández M
    Braz J Microbiol; 2015; 46(3):707-13. PubMed ID: 26413051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The respiratory system of Chromobacterium violaceum grown under conditions of high and low cyanide evolution.
    Niven DF; Collins PA; Knowles CJ
    J Gen Microbiol; 1975 Oct; 90(2):271-85. PubMed ID: 172598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox and ligand exchange reactions of potential gold(I) and gold(III)-cyanide metabolites under biomimetic conditions.
    Canumalla AJ; Al-Zamil N; Phillips M; Isab AA; Shaw CF
    J Inorg Biochem; 2001 May; 85(1):67-76. PubMed ID: 11377697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial destruction of cyanide wastes in gold mining: process review.
    Akcil A; Mudder T
    Biotechnol Lett; 2003 Mar; 25(6):445-50. PubMed ID: 12882268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso.
    Razanamahandry LC; Andrianisa HA; Karoui H; Kouakou KM; Yacouba H
    Chemosphere; 2016 Aug; 157():71-8. PubMed ID: 27209555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of cyanide containing effluents by Scenedesmus obliquus.
    Gurbuz F; Ciftci H; Akcil A
    J Hazard Mater; 2009 Feb; 162(1):74-9. PubMed ID: 18554792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.