These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15381401)

  • 1. On the importance of being zwitterionic: enzymatic catalysis of decarboxylation and deprotonation of cationic carbon.
    Richard JP; Amyes TL
    Bioorg Chem; 2004 Oct; 32(5):354-66. PubMed ID: 15381401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton transfer at carbon.
    Richard JP; Amyes TL
    Curr Opin Chem Biol; 2001 Dec; 5(6):626-33. PubMed ID: 11738171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decarboxylation, CO2 and the reversion problem.
    Kluger R
    Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and stability of the enolates of N-protonated proline methyl ester and proline zwitterion in aqueous solution: a nonenzymatic model for the first step in the racemization of proline catalyzed by proline racemase.
    Williams G; Maziarz EP; Amyes TL; Wood TD; Richard JP
    Biochemistry; 2003 Jul; 42(27):8354-61. PubMed ID: 12846584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions.
    Richard JP
    Pure Appl Chem; 2011 Jul; 83(8):1555-1565. PubMed ID: 23505326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-enhanced decarboxylation of the covalent intermediate in benzoylformate decarboxylase--Desolvation or acid catalysis?
    Kluger R; Yu D
    Bioorg Chem; 2006 Dec; 34(6):337-44. PubMed ID: 16996103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyzing separation of carbon dioxide in thiamin diphosphate-promoted decarboxylation.
    Kluger R; Rathgeber S
    FEBS J; 2008 Dec; 275(24):6089-100. PubMed ID: 19016847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes.
    Kluger R; Ikeda G; Hu Q; Cao P; Drewry J
    J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the intramolecular deprotonation of a carbon acid in aqueous solution.
    Sharma R; Thorley M; McNamara JP; Watt CI; Burton NA
    Phys Chem Chem Phys; 2008 May; 10(18):2475-87. PubMed ID: 18446247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of alternate substrates demonstrate stereoelectronic control of reactivity in dialkylglycine decarboxylase.
    Sun S; Zabinski RF; Toney MD
    Biochemistry; 1998 Mar; 37(11):3865-75. PubMed ID: 9521707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setting the stage for new catalytic functions in designed proteins--exploring the imine pathway in the efficient decarboxylation of oxaloacetate by an Arg-Lys site in a four-helix bundle protein scaffold.
    Allert M; Baltzer L
    Chemistry; 2002 Jun; 8(11):2549-60. PubMed ID: 12180334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent migration from the C- to the N-terminus of amino acid in photoionization of phenylglycine-water complex.
    Kim HM; Han KY; Park J; Kim GS; Kim SK
    J Chem Phys; 2008 Jan; 128(4):041104. PubMed ID: 18247923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consequences of acid strength for isomerization and elimination catalysis on solid acids.
    Macht J; Carr RT; Iglesia E
    J Am Chem Soc; 2009 May; 131(18):6554-65. PubMed ID: 19374417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic anions embedded into avidin: importance of their chirality and the chiral environment on the stereocontrol of the aldol reaction.
    Gauchot V; Schmitzer AR
    J Org Chem; 2014 Mar; 79(6):2694-701. PubMed ID: 24559501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Acidity in Enzyme Active Sites.
    Toney MD
    Front Bioeng Biotechnol; 2019; 7():25. PubMed ID: 30838206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis of decarboxylation by an adjacent negative charge: a theoretical approach.
    Tran NL; Colvin ME; Gronert S; Wu W
    Bioorg Chem; 2003 Aug; 31(4):271-7. PubMed ID: 12877877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of single-site mutants of citrate synthase to catalyze proton transfer from the methyl group of dethiaacetyl-coenzyme A, a non-thioester substrate analog.
    Kurz LC; Roble JH; Nakra T; Drysdale GR; Buzan JM; Schwartz B; Drueckhammer DG
    Biochemistry; 1997 Apr; 36(13):3981-90. PubMed ID: 9092828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes.
    Lewis CA; Wolfenden R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17328-33. PubMed ID: 18988736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity descriptors in acid catalysis: acid strength, proton affinity and host-guest interactions.
    Deshlahra P; Iglesia E
    Chem Commun (Camb); 2020 Jul; 56(54):7371-7398. PubMed ID: 32568324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.