BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

818 related articles for article (PubMed ID: 15381417)

  • 1. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain.
    Aravind L; Iyer LM; Leipe DD; Koonin EV
    Genome Biol; 2004; 5(5):R30. PubMed ID: 15128444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary history and higher order classification of AAA+ ATPases.
    Iyer LM; Leipe DD; Koonin EV; Aravind L
    J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.
    Arya P; Acharya V
    PLoS One; 2016; 11(3):e0150634. PubMed ID: 26930396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.
    Aravind L; Anantharaman V; Koonin EV
    Proteins; 2002 Jul; 48(1):1-14. PubMed ID: 12012333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains.
    Anantharaman V; Koonin EV; Aravind L
    J Mol Biol; 2001 Apr; 307(5):1271-92. PubMed ID: 11292341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.
    Arya P; Acharya V
    Mol Genet Genomics; 2018 Feb; 293(1):17-31. PubMed ID: 28900732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analysis of AAA proteins.
    Frickey T; Lupas AN
    J Struct Biol; 2004; 146(1-2):2-10. PubMed ID: 15037233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events.
    Urbach JM; Ausubel FM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1063-1068. PubMed ID: 28096345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The many faces of the helix-turn-helix domain: transcription regulation and beyond.
    Aravind L; Anantharaman V; Balaji S; Babu MM; Iyer LM
    FEMS Microbiol Rev; 2005 Apr; 29(2):231-62. PubMed ID: 15808743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins.
    Danot O; Marquenet E; Vidal-Ingigliardi D; Richet E
    Structure; 2009 Feb; 17(2):172-82. PubMed ID: 19217388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer.
    Ponting CP; Aravind L; Schultz J; Bork P; Koonin EV
    J Mol Biol; 1999 Jun; 289(4):729-45. PubMed ID: 10369758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification and evolution of P-loop GTPases and related ATPases.
    Leipe DD; Wolf YI; Koonin EV; Aravind L
    J Mol Biol; 2002 Mar; 317(1):41-72. PubMed ID: 11916378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell.
    Makarova KS; Aravind L; Galperin MY; Grishin NV; Tatusov RL; Wolf YI; Koonin EV
    Genome Res; 1999 Jul; 9(7):608-28. PubMed ID: 10413400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer.
    Iyer LM; Koonin EV; Aravind L
    Gene; 2004 Jun; 335():73-88. PubMed ID: 15194191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation.
    Gangwar D; Kalita MK; Gupta D; Chauhan VS; Mohmmed A
    Malar J; 2009 Apr; 8():69. PubMed ID: 19374766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif.
    Koonin EV
    J Mol Biol; 1993 Feb; 229(4):1165-74. PubMed ID: 8445645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.