These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 15381680)

  • 1. Sensing tension: recognizing ENaC as a stretch sensor.
    Benos DJ
    Hypertension; 2004 Nov; 44(5):616-7. PubMed ID: 15381680
    [No Abstract]   [Full Text] [Related]  

  • 2. Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor.
    Drummond HA; Gebremedhin D; Harder DR
    Hypertension; 2004 Nov; 44(5):643-8. PubMed ID: 15381679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells.
    Haga JH; Li YS; Chien S
    J Biomech; 2007; 40(5):947-60. PubMed ID: 16867303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular ENaC proteins are required for renal myogenic constriction.
    Jernigan NL; Drummond HA
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F891-901. PubMed ID: 15914781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epithelial Na+ channel: a new player in the vasculature.
    Kusche-Vihrog K; Tarjus A; Fels J; Jaisser F
    Curr Opin Nephrol Hypertens; 2014 Mar; 23(2):143-8. PubMed ID: 24378777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle.
    Drummond HA; Grifoni SC; Jernigan NL
    Physiology (Bethesda); 2008 Feb; 23():23-31. PubMed ID: 18268362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis.
    Drummond HA; Jernigan NL; Grifoni SC
    Hypertension; 2008 May; 51(5):1265-71. PubMed ID: 18378856
    [No Abstract]   [Full Text] [Related]  

  • 8. Stretch-dependent smooth muscle differentiation in the portal vein-role of actin polymerization, calcium signaling, and microRNAs.
    Albinsson S; Bhattachariya A; Hellstrand P
    Microcirculation; 2014 Apr; 21(3):230-8. PubMed ID: 24238368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Kv1 channels in control of arterial myogenic reactivity to intraluminal pressure.
    Cole WC; Plane F; Johnson R
    Circ Res; 2005 Jul; 97(1):e1. PubMed ID: 16002751
    [No Abstract]   [Full Text] [Related]  

  • 10. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
    Win Z; Vrla GD; Steucke KE; Sevcik EN; Hald ES; Alford PW
    Integr Biol (Camb); 2014 Dec; 6(12):1201-10. PubMed ID: 25363686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of stretch on vascular smooth muscle cell phenotype in vitro.
    Halka AT; Turner NJ; Carter A; Ghosh J; Murphy MO; Kirton JP; Kielty CM; Walker MG
    Cardiovasc Pathol; 2008; 17(2):98-102. PubMed ID: 18329554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics.
    Matsumoto T; Nagayama K
    J Biomech; 2012 Mar; 45(5):745-55. PubMed ID: 22177671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic stretch upregulates SDF-1alpha/CXCR4 axis in human saphenous vein smooth muscle cells.
    Li F; Guo WY; Li WJ; Zhang DX; Lv AL; Luan RH; Liu B; Wang HC
    Biochem Biophys Res Commun; 2009 Aug; 386(1):247-51. PubMed ID: 19523923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The knack of resisting increases in intravascular pressure: the potential role for epithelial Na(+) channel protein subunits in arterial myogenic reactivity.
    Taggart M
    Exp Physiol; 2012 Apr; 97(4):474-5. PubMed ID: 22525663
    [No Abstract]   [Full Text] [Related]  

  • 15. Epithelial Na+ channel proteins are mechanotransducers of myogenic constriction in rat posterior cerebral arteries.
    Kim EC; Ahn DS; Yeon SI; Lim M; Lee YH
    Exp Physiol; 2012 Apr; 97(4):544-55. PubMed ID: 22090066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction in Caenorhabditis elegans: the role of DEG/ENaC ion channels.
    Tavernarakis N; Driscoll M
    Cell Biochem Biophys; 2001; 35(1):1-18. PubMed ID: 11898851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitylation and control of renal Na+ balance and blood pressure.
    Ronzaud C; Staub O
    Physiology (Bethesda); 2014 Jan; 29(1):16-26. PubMed ID: 24382868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiaxial stretch.
    Na S; Trache A; Trzeciakowski J; Sun Z; Meininger GA; Humphrey JD
    Ann Biomed Eng; 2008 Mar; 36(3):369-80. PubMed ID: 18214679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain.
    Kurpinski K; Park J; Thakar RG; Li S
    Mol Cell Biomech; 2006 Mar; 3(1):21-34. PubMed ID: 16711069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.