BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15381722)

  • 1. Deficient cell proliferation in palatal shelf mesenchyme of CL/Fr mouse embryos.
    Sasaki Y; Tanaka S; Hamachi T; Taya Y
    J Dent Res; 2004 Oct; 83(10):797-801. PubMed ID: 15381722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between palatal morphogenesis and Pax9 expression pattern in CL/Fr embryos with clefting during palatal development.
    Hamachi T; Sasaki Y; Hidaka K; Nakata M
    Arch Oral Biol; 2003 Aug; 48(8):581-7. PubMed ID: 12828987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of an in vitro palate nonfusion model using interposed embryonic mesenchyme.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Peled ZM; Longaker MT
    Plast Reconstr Surg; 2002 Jun; 109(7):2363-72. PubMed ID: 12045564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in vascular pattern of the developing palate in normal and spontaneous cleft palate mouse embryos.
    Amin N; Ohashi Y; Chiba J; Yoshida S; Takano Y
    Cleft Palate Craniofac J; 1994 Sep; 31(5):332-44. PubMed ID: 7986793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro investigation of the secondary palate development in two strains of mice.
    Scheller K; Schubert A; Schubert J
    Int J Oral Maxillofac Surg; 2011 Jul; 40(7):737-42. PubMed ID: 21458234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental alterations associated with spontaneous cleft lip and palate in CL/Fr mice.
    Millicovsky G; Ambrose LJ; Johnston MC
    Am J Anat; 1982 May; 164(1):29-44. PubMed ID: 7102571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficient and delayed primary palatal fusion and mesenchymal bridge formation in cleft lip-liable strains of mice.
    Wang KY; Juriloff DM; Diewert VM
    J Craniofac Genet Dev Biol; 1995; 15(3):99-116. PubMed ID: 8642057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular contribution to cleft palate production in cleft lip mice.
    Sasaki Y; Taya Y; Saito K; Fujita K; Aoba T; Fujiwara T
    Congenit Anom (Kyoto); 2014 May; 54(2):94-9. PubMed ID: 24206222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY
    J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fetus weight, dam strain, dam weight, and litter size on the craniofacial morphogenesis of CL/Fr mouse fetuses affected with cleft lip and palate.
    Nonaka K; Sasaki Y; Watanabe Y; Yanagita K; Nakata M
    Cleft Palate Craniofac J; 1997 Jul; 34(4):325-30. PubMed ID: 9257023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis of cleft palate in TGF-beta3 knockout mice.
    Taya Y; O'Kane S; Ferguson MW
    Development; 1999 Sep; 126(17):3869-79. PubMed ID: 10433915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme.
    Li N; Liu J; Liu H; Wang S; Hu P; Zhou H; Xiao J; Liu C
    J Mol Histol; 2021 Feb; 52(1):45-61. PubMed ID: 33159638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dam strain on the craniofacial morphogenesis of CL/Fr mouse fetuses.
    Martin DA; Nonaka K; Yanagita K; Nakata M
    J Craniofac Genet Dev Biol; 1995; 15(3):117-24. PubMed ID: 8642051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C; Lan Y; Krumlauf R; Jiang R
    J Dent Res; 2017 Oct; 96(11):1273-1281. PubMed ID: 28692808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.
    Nik AM; Johansson JA; Ghiami M; Reyahi A; Carlsson P
    Dev Biol; 2016 Jul; 415(1):14-23. PubMed ID: 27180663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the dam strain on the spontaneous incidence of cleft lip and palate and intrauterine growth of CL/Fr mouse fetuses.
    Nonaka K; Sasaki Y; Martin DA; Nakata M
    J Assist Reprod Genet; 1995 Aug; 12(7):447-52. PubMed ID: 8574073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M; Lan Y; Liu H; Wu Z; Imamura T; Jiang R
    Dev Dyn; 2021 Apr; 250(4):562-573. PubMed ID: 33034111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of cleft lip formation in CL/Fr mice.
    Nakazawa M; Matsunaga K; Asamura S; Kusuhara H; Isogai N; Muragaki Y
    Scand J Plast Reconstr Surg Hand Surg; 2008; 42(5):225-32. PubMed ID: 18830900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.