These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15381748)

  • 1. Changing brain networks for visuomotor control with increased movement automaticity.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2004 Oct; 92(4):2405-12. PubMed ID: 15381748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishable brain activation networks for short- and long-term motor skill learning.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2005 Jul; 94(1):512-8. PubMed ID: 15716371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional MRI of motor sequence acquisition: effects of learning stage and performance.
    Müller RA; Kleinhans N; Pierce K; Kemmotsu N; Courchesne E
    Brain Res Cogn Brain Res; 2002 Aug; 14(2):277-93. PubMed ID: 12067701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuroimage; 2004 Apr; 21(4):1416-27. PubMed ID: 15050567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning.
    Tzvi E; Verleger R; Münte TF; Krämer UM
    Neuroimage; 2016 Nov; 141():60-70. PubMed ID: 27403869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback.
    Mayhew SD; Porcaro C; Tecchio F; Bagshaw AP
    Neuroimage; 2017 Mar; 148():330-342. PubMed ID: 28093359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization.
    Meister I; Krings T; Foltys H; Boroojerdi B; Müller M; Töpper R; Thron A
    Hum Brain Mapp; 2005 Jul; 25(3):345-52. PubMed ID: 15852385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural substrates of visuomotor learning based on improved feedback control and prediction.
    Grafton ST; Schmitt P; Van Horn J; Diedrichsen J
    Neuroimage; 2008 Feb; 39(3):1383-95. PubMed ID: 18032069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in brain activation during the acquisition of a new bimanual coodination task.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuropsychologia; 2004; 42(7):855-67. PubMed ID: 14998701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training.
    Walz AD; Doppl K; Kaza E; Roschka S; Platz T; Lotze M
    Behav Brain Res; 2015 Feb; 278():393-403. PubMed ID: 25194587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedforward and feedback processes in motor control.
    Seidler RD; Noll DC; Thiers G
    Neuroimage; 2004 Aug; 22(4):1775-83. PubMed ID: 15275933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral basal ganglia activation associated with sensorimotor adaptation.
    Seidler RD; Noll DC; Chintalapati P
    Exp Brain Res; 2006 Nov; 175(3):544-55. PubMed ID: 16794848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-free characterization of brain functional networks for motor sequence learning using fMRI.
    Tamás Kincses Z; Johansen-Berg H; Tomassini V; Bosnell R; Matthews PM; Beckmann CF
    Neuroimage; 2008 Feb; 39(4):1950-8. PubMed ID: 18053746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.