BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 15381776)

  • 21. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.
    Morel G; Sterck L; Swennen D; Marcet-Houben M; Onesime D; Levasseur A; Jacques N; Mallet S; Couloux A; Labadie K; Amselem J; Beckerich JM; Henrissat B; Van de Peer Y; Wincker P; Souciet JL; Gabaldón T; Tinsley CR; Casaregola S
    Sci Rep; 2015 Jun; 5():11571. PubMed ID: 26108467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate specificity and mechanism from the structure of Pyrococcus furiosus galactokinase.
    Hartley A; Glynn SE; Barynin V; Baker PJ; Sedelnikova SE; Verhees C; de Geus D; van der Oost J; Timson DJ; Reece RJ; Rice DW
    J Mol Biol; 2004 Mar; 337(2):387-98. PubMed ID: 15003454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo's law of irreversible loss.
    Haase MAB; Kominek J; Opulente DA; Shen XX; LaBella AL; Zhou X; DeVirgilio J; Hulfachor AB; Kurtzman CP; Rokas A; Hittinger CT
    Genetics; 2021 Feb; 217(2):. PubMed ID: 33724406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the evolution of a classic genetic switch.
    Josephides C; Moses AM
    BMC Syst Biol; 2011 Feb; 5():24. PubMed ID: 21294912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans.
    Barreto M; Jedlicki E; Holmes DS
    Appl Environ Microbiol; 2005 Jun; 71(6):2902-9. PubMed ID: 15932984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A galactokinase-like protein from the liver fluke Fasciola hepatica.
    Zinsser VL; Cox C; McAuley M; Hoey EM; Trudgett A; Timson DJ
    Exp Parasitol; 2018 Sep; 192():65-72. PubMed ID: 30040960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The occurrence of the Leloir pathway in non-pathogenic mycobacteria.
    Szumiło T
    Acta Microbiol Pol; 1981; 30(4):327-33. PubMed ID: 6179392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetics of the yeast galactose genetic switch.
    Bhat PJ; Iyer RS
    J Biosci; 2009 Oct; 34(4):513-22. PubMed ID: 19920337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hsp90 mediates the crosstalk between galactose metabolism and cell morphology pathways in yeast.
    Gopinath RK; Leu JY
    Curr Genet; 2017 Feb; 63(1):23-27. PubMed ID: 27209632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A yeast catabolic enzyme controls transcriptional memory.
    Zacharioudakis I; Gligoris T; Tzamarias D
    Curr Biol; 2007 Dec; 17(23):2041-6. PubMed ID: 17997309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality.
    Gopinath RK; Leu JY
    Mol Cell Biol; 2016 May; 36(9):1412-24. PubMed ID: 26951197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes.
    Abramczyk D; Holden S; Page CJ; Reece RJ
    Eukaryot Cell; 2012 Mar; 11(3):334-42. PubMed ID: 22210830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular structure of Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional inducer.
    Thoden JB; Sellick CA; Timson DJ; Reece RJ; Holden HM
    J Biol Chem; 2005 Nov; 280(44):36905-11. PubMed ID: 16115868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes.
    Mollet B; Pilloud N
    J Bacteriol; 1991 Jul; 173(14):4464-73. PubMed ID: 2066342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes.
    Timson DJ; Reece RJ
    Biochimie; 2002 Apr; 84(4):265-72. PubMed ID: 12106903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection and analysis of galactose metabolic pathway variants of a mouse liver cell line.
    Zaret KS; Stevens KA
    Mol Cell Biol; 1990 Sep; 10(9):4582-9. PubMed ID: 2167434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene organization and structure of the Streptomyces lividans gal operon.
    Adams CW; Fornwald JA; Schmidt FJ; Rosenberg M; Brawner ME
    J Bacteriol; 1988 Jan; 170(1):203-12. PubMed ID: 3335481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upregulation of galactose metabolic pathway by N-acetylglucosamine induced endogenous synthesis of galactose in Candida albicans.
    Kamthan M; Kamthan A; Ruhela D; Maiti P; Bhavesh NS; Datta A
    Fungal Genet Biol; 2013 May; 54():15-24. PubMed ID: 23454545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peer pressure: evolutionary responses to biotic pressures in wine yeasts.
    Conacher CG; Rossouw D; Bauer FFB
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31626300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.