BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15382249)

  • 1. Nonphosphorylated high-molecular-weight neurofilament expression suggests early maturation of the monkey subiculum.
    Lavenex P; Lavenex PB; Amaral DG
    Hippocampus; 2004; 14(7):797-801. PubMed ID: 15382249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression and localization of the phosphorylated and nonphosphorylated neurofilaments during the early postnatal development of rat hippocampus.
    Lopez-Picon FR; Uusi-Oukari M; Holopainen IE
    Hippocampus; 2003; 13(7):767-79. PubMed ID: 14620872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferase immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeys.
    Alonso JR; Amaral DG
    J Comp Neurol; 1995 May; 355(2):135-70. PubMed ID: 7608341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri).
    Abrahám H; Czéh B; Fuchs E; Seress L
    Neuroscience; 2005; 136(1):231-40. PubMed ID: 16181735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precocious development of parvalbumin-like immunoreactive interneurons in the hippocampal formation and entorhinal cortex of the fetal cynomolgus monkey.
    Berger B; De Grissac N; Alvarez C
    J Comp Neurol; 1999 Jan; 403(3):309-31. PubMed ID: 9886033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in BDNF-immunoreactive structures in the hippocampal formation of the aged macaque monkey.
    Hayashi M; Mistunaga F; Ohira K; Shimizu K
    Brain Res; 2001 Nov; 918(1-2):191-6. PubMed ID: 11684059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices.
    Hof PR; Nimchinsky EA; Morrison JH
    J Comp Neurol; 1995 Nov; 362(1):109-33. PubMed ID: 8576425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain.
    Friedman DP; Aggleton JP; Saunders RC
    J Comp Neurol; 2002 Sep; 450(4):345-65. PubMed ID: 12209848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey.
    Amaral DG; Kondo H; Lavenex P
    J Comp Neurol; 2014 May; 522(7):1485-505. PubMed ID: 24122645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The time of origin of neurons in the hippocampal region of the rhesus monkey.
    Rakic P; Nowakowski RS
    J Comp Neurol; 1981 Feb; 196(1):99-128. PubMed ID: 7204668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building hippocampal circuits to learn and remember: insights into the development of human memory.
    Lavenex P; Banta Lavenex P
    Behav Brain Res; 2013 Oct; 254():8-21. PubMed ID: 23428745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular blueprint of gene expression in hippocampal subregions CA1, CA3, and DG is conserved in the brain of the common marmoset.
    Datson NA; Morsink MC; Steenbergen PJ; Aubert Y; Schlumbohm C; Fuchs E; de Kloet ER
    Hippocampus; 2009 Aug; 19(8):739-52. PubMed ID: 19156849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does a unique type of CA3 pyramidal cell in primates bypass the dentate gate?
    Buckmaster PS
    J Neurophysiol; 2005 Jul; 94(1):896-900. PubMed ID: 15800071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two reentrant pathways in the hippocampal-entorhinal system.
    Kloosterman F; van Haeften T; Lopes da Silva FH
    Hippocampus; 2004; 14(8):1026-39. PubMed ID: 15390170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system.
    Bartesaghi R; Raffi M; Ciani E
    Neuroscience; 2006 Feb; 137(3):875-90. PubMed ID: 16325342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex.
    Craig S; Commins S
    Brain Res; 2007 May; 1147():124-39. PubMed ID: 17368431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and topography of fibers contributing to the fornix in macaque monkeys.
    Saunders RC; Aggleton JP
    Hippocampus; 2007; 17(5):396-411. PubMed ID: 17372974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projections from the hippocampal region to the mammillary bodies in macaque monkeys.
    Aggleton JP; Vann SD; Saunders RC
    Eur J Neurosci; 2005 Nov; 22(10):2519-30. PubMed ID: 16307594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation.
    Castelli L; Nigro MJ; Magistretti J
    Brain Res; 2007 Aug; 1163():44-55. PubMed ID: 17628510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of the hippocampal formation: a stereological study in macaque monkeys.
    Jabès A; Lavenex PB; Amaral DG; Lavenex P
    J Comp Neurol; 2011 Apr; 519(6):1051-70. PubMed ID: 21344402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.