BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15382804)

  • 1. Plantar foot pressure responses to changes during dynamic trans-tibial prosthetic alignment in a clinical setting.
    Geil MD; Lay A
    Prosthet Orthot Int; 2004 Aug; 28(2):105-14. PubMed ID: 15382804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses.
    Boone DA; Kobayashi T; Chou TG; Arabian AK; Coleman KL; Orendurff MS; Zhang M
    Gait Posture; 2013 Apr; 37(4):620-6. PubMed ID: 23177920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usability of gait analysis in the alignment of trans-tibial prostheses: a clinical study.
    Van Velzen JM; Houdijk H; Polomski W; Van Bennekom CA
    Prosthet Orthot Int; 2005 Dec; 29(3):255-67. PubMed ID: 16466155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Alignment Changes on Unilateral Transtibial Amputee's Gait: A Systematic Review.
    Jonkergouw N; Prins MR; Buis AW; van der Wurff P
    PLoS One; 2016; 11(12):e0167466. PubMed ID: 27923050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of foot impairment in rheumatoid arthritis patients by dynamic pedobarography.
    Schmiegel A; Rosenbaum D; Schorat A; Hilker A; Gaubitz M
    Gait Posture; 2008 Jan; 27(1):110-4. PubMed ID: 17419061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.
    Blumentritt S; Schmalz T; Jarasch R; Schneider M
    Prosthet Orthot Int; 1999 Dec; 23(3):231-8. PubMed ID: 10890598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Socket reaction moments in transtibial prostheses during walking at clinically perceived optimal alignment.
    Kobayashi T; Orendurff MS; Zhang M; Boone DA
    Prosthet Orthot Int; 2016 Aug; 40(4):503-8. PubMed ID: 26133191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report.
    Pinzur MS; Cox W; Kaiser J; Morris T; Patwardhan A; Vrbos L
    J Rehabil Res Dev; 1995 Nov; 32(4):373-7. PubMed ID: 8770802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-tibial amputee gait: time-distance parameters and EMG activity.
    Isakov E; Keren O; Benjuya N
    Prosthet Orthot Int; 2000 Dec; 24(3):216-20. PubMed ID: 11195356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic loads at knee joint of trans-tibial amputee on different terrains].
    Jia X; Zhang M; Fan Y; Wang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):221-4. PubMed ID: 15884522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis.
    Zhang M; Turner-Smith AR; Tanner A; Roberts VC
    Med Eng Phys; 1998 Apr; 20(3):188-98. PubMed ID: 9690489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic alignment of transtibial prostheses through visualization of socket reaction moments.
    Kobayashi T; Orendurff MS; Boone DA
    Prosthet Orthot Int; 2015 Dec; 39(6):512-6. PubMed ID: 25121726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of heel lifting on transtibial amputee gait before and after treadmill walking: a case study.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Prosthet Orthot Int; 2013 Aug; 37(4):317-23. PubMed ID: 23124990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pes planovalgus in RA: a descriptive and analytical study of foot function determined by gait analysis.
    Turner DE; Woodburn J; Helliwell PS; Cornwall MW; Emery P
    Musculoskeletal Care; 2003 Mar; 1(1):21-33. PubMed ID: 20217661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.
    Wolf SI; Alimusaj M; Fradet L; Siegel J; Braatz F
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):860-5. PubMed ID: 19744755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between socket pressure and EMG of two muscles in trans-femoral stumps during gait.
    Hong JH; Mun MS
    Prosthet Orthot Int; 2005 Apr; 29(1):59-72. PubMed ID: 16180378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor learning of a gait pattern to reduce forefoot plantar pressures in individuals with diabetic peripheral neuropathy.
    York RM; Perell-Gerson KL; Barr M; Durham J; Roper JM
    PM R; 2009 May; 1(5):434-41. PubMed ID: 19627930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses.
    Hansen AH; Childress DS; Knox EH
    Prosthet Orthot Int; 2000 Dec; 24(3):205-15. PubMed ID: 11195355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.