These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 15382807)

  • 1. Characterisation of prosthetic feet used in low-income countries.
    Sam M; Hansen AH; Childress DS
    Prosthet Orthot Int; 2004 Aug; 28(2):132-40. PubMed ID: 15382807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and dynamic characterization of prosthetic feet for high activity users during weighted and unweighted walking.
    Koehler-McNicholas SR; Nickel EA; Barrons K; Blaharski KE; Dellamano CA; Ray SF; Schnall BL; Hendershot BD; Hansen AH
    PLoS One; 2018; 13(9):e0202884. PubMed ID: 30208040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue testing of energy storing prosthetic feet.
    Toh SL; Goh JC; Tan PH; Tay TE
    Prosthet Orthot Int; 1993 Dec; 17(3):180-8. PubMed ID: 8134278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
    Meier MR; Tucker KA; Hansen AH
    J Rehabil Res Dev; 2014; 51(3):439-50. PubMed ID: 25019666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 'shape&roll' prosthetic foot: II. Field testing in El Salvador.
    Meier MR; Sam M; Hansen AH; Childress DS
    Med Confl Surviv; 2004; 20(4):307-25. PubMed ID: 15688882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses.
    Hansen AH; Childress DS; Knox EH
    Prosthet Orthot Int; 2000 Dec; 24(3):205-15. PubMed ID: 11195355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet.
    Gardiner J; Bari AZ; Howard D; Kenney L
    J Rehabil Res Dev; 2016; 53(6):1133-1138. PubMed ID: 28355033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.
    De Asha AR; Johnson L; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol); 2013 Feb; 28(2):218-24. PubMed ID: 23261018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical design framework for prosthetic feet: Experimentally validated non-linear finite element procedure.
    Balaramakrishnan TM; Natarajan S; Sujatha S
    Med Eng Phys; 2021 Jun; 92():64-70. PubMed ID: 34167713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 'shape&roll' prosthetic foot: I. Design and development of appropriate technology for low-income countries.
    Sam M; Childress DS; Hansen AH; Meier MR; Lambla S; Grahn EC; Rolock JS
    Med Confl Surviv; 2004; 20(4):294-306. PubMed ID: 15688881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of High- and Low-Damping Prosthetic Foot Structures on Knee Loading in the Uninvolved Limb Across Different Walking Speeds.
    Jin L; Adamczyk PG; Roland M; Hahn ME
    J Appl Biomech; 2016 Jun; 32(3):233-40. PubMed ID: 26671831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal plane roll-over analysis of prosthetic feet.
    van Hal ES; Curtze C; Postema K; Hijmans JM; Otten E
    J Biomech; 2021 Aug; 125():110610. PubMed ID: 34252823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of unilateral transtibial prosthesis users.
    Klodd E; Hansen A; Fatone S; Edwards M
    J Rehabil Res Dev; 2010; 47(6):543-52. PubMed ID: 20848367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing forefoot and heel stiffnesses across commercial prosthetic feet manufactured for individuals with varying body weights and foot sizes.
    Ruxin TR; Halsne EG; Turner AT; Curran CS; Caputo JM; Hansen AH; Hafner BJ; Morgenroth DC
    Prosthet Orthot Int; 2022 Oct; 46(5):425-431. PubMed ID: 35426860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation.
    Barr AE; Siegel KL; Danoff JV; McGarvey CL; Tomasko A; Sable I; Stanhope SJ
    Phys Ther; 1992 May; 72(5):344-54. PubMed ID: 1631203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of alignment on the roll-over shapes of prosthetic feet.
    Hansen A
    Prosthet Orthot Int; 2008 Dec; 32(4):390-402. PubMed ID: 18985550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet.
    Webber CM; Kaufman K
    Prosthet Orthot Int; 2017 Oct; 41(5):463-468. PubMed ID: 28008788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roll-over shapes of human locomotor systems: effects of walking speed.
    Hansen AH; Childress DS; Knox EH
    Clin Biomech (Bristol); 2004 May; 19(4):407-14. PubMed ID: 15109762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.