These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15382851)

  • 1. Molybdenum scavenging by iron monosulfide.
    Helz GR; Vorlicek TP; Kahn MD
    Environ Sci Technol; 2004 Aug; 38(16):4263-8. PubMed ID: 15382851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilities of thiomolybdate complexes of iron; implications for retention of essential trace elements (Fe, Cu, Mo) in sulfidic waters.
    Helz GR; Erickson BE; Vorlicek TP
    Metallomics; 2014 Jun; 6(6):1131-40. PubMed ID: 24226648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2).
    Bostick BC; Fendorf S; Helz GR
    Environ Sci Technol; 2003 Jan; 37(2):285-91. PubMed ID: 12564899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of molybdenum association with particulate organic matter under sulfidic conditions.
    Dahl TW; Chappaz A; Hoek J; McKenzie CJ; Svane S; Canfield DE
    Geobiology; 2017 Mar; 15(2):311-323. PubMed ID: 27997756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Mar; 62(10):1726-35. PubMed ID: 16084558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elicitation of thiomolybdates from the iron-molybdenum cofactor of nitrogenase. Comparison with synthetic Fe-Mo-S complexes.
    Newton WE; Gheller SF; Hedman B; Hodgson KO; Lough SM; McDonald JW
    Eur J Biochem; 1986 Aug; 159(1):111-5. PubMed ID: 3462002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing the role of Fe (II) on flocculation of sand-clay mixtures under estuarine mixing.
    Febina AM; Priya KL
    Environ Res; 2024 Jun; 251(Pt 1):118590. PubMed ID: 38437900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption.
    Meghdadi A
    Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron- and aluminium-induced depletion of molybdenum in acidic environments impedes the nitrogen cycle.
    Ge X; Vaccaro BJ; Thorgersen MP; Poole FL; Majumder EL; Zane GM; De León KB; Lancaster WA; Moon JW; Paradis CJ; von Netzer F; Stahl DA; Adams PD; Arkin AP; Wall JD; Hazen TC; Adams MWW
    Environ Microbiol; 2019 Jan; 21(1):152-163. PubMed ID: 30289197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption behavior of toxic tributyltin to clay-rich sediments under various environmental conditions.
    Hoch M; Alonso-Azcarate J; Lischick M
    Environ Toxicol Chem; 2002 Jul; 21(7):1390-7. PubMed ID: 12109738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenite reduction in Boom clay: Effect of FeS(2), clay minerals and dissolved organic matter.
    Bruggeman C; Maes A; Vancluysen J; Vandemussele P
    Environ Pollut; 2005 Sep; 137(2):209-21. PubMed ID: 15885861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron monosulfide as a scavenger for dissolved hexavalent chromium and cadmium.
    Jo S; Lee JY; Kong SH; Choi J; Park JW
    Environ Technol; 2008 Sep; 29(9):975-83. PubMed ID: 18844124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1.
    Ilgen AG; Trainor TP
    Environ Sci Technol; 2012 Jan; 46(2):843-51. PubMed ID: 22136137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2011 Jul; 45(14):6175-80. PubMed ID: 21696218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Efficiency of Sediment Amendment with Zirconium-Modified Kaolin Clay to Control Phosphorus Release from Sediments in Heavily Polluted Rivers].
    Wang H; Lin JW; Zhan YH; Zhang Z; Wang DR
    Huan Jing Ke Xue; 2015 Oct; 36(10):3720-9. PubMed ID: 26841604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.
    Wang X; Li Y
    J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on phosphorus(P) fixation in the sediment of lake using the clays modified by LaCl3].
    Yuan XZ; Pan G; Tian BH; Chen H
    Huan Jing Ke Xue; 2007 Feb; 28(2):403-6. PubMed ID: 17489206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction of clay minerals with microorganisms: a review of experimental data].
    Naĭmark EB; Eroshchev-Shak VA; Chizhikova NP; Kompantseva EI
    Zh Obshch Biol; 2009; 70(2):155-67. PubMed ID: 19425352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of Fe(II) species associated with clay minerals.
    Hofstetter TB; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2003 Feb; 37(3):519-28. PubMed ID: 12630467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.