These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 15382870)
1. Intercorrelations among degree of geochemical alterations, physicochemical properties, and organic sorption equilibria of kerogen. Yang C; Huang W; Xiao B; Yu Z; Peng P; Fu J; Sheng G Environ Sci Technol; 2004 Aug; 38(16):4396-408. PubMed ID: 15382870 [TBL] [Abstract][Full Text] [Related]
2. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants. Xiao B; Yu Z; Huang W; Song J; Peng P Environ Sci Technol; 2004 Nov; 38(22):5842-52. PubMed ID: 15573581 [TBL] [Abstract][Full Text] [Related]
3. [Sorption and desorption of hydrophobic organic contaminants (HOCs) by different type of coal]. Yang C; Huang WL; Fu JM; Sheng GY Huan Jing Ke Xue; 2004 Nov; 25(6):145-9. PubMed ID: 15759900 [TBL] [Abstract][Full Text] [Related]
4. Impact of kerogen heterogeneity on sorption of organic pollutants. 1. Sorbent characterization. Yang C; Huang W; Fu J; Dang Z Environ Toxicol Chem; 2009 Aug; 28(8):1585-91. PubMed ID: 19425817 [TBL] [Abstract][Full Text] [Related]
5. Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria. Yang C; Yu Z; Xiao B; Huang W; Fu J; Dang Z Environ Toxicol Chem; 2009 Aug; 28(8):1592-8. PubMed ID: 19309179 [TBL] [Abstract][Full Text] [Related]
6. The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments. Ran Y; Huang W; Rao PS; Liu D; Sheng G; Fu J J Environ Qual; 2002; 31(6):1953-62. PubMed ID: 12469845 [TBL] [Abstract][Full Text] [Related]
7. Kerogen in aquifer material and its strong sorption for nonionic organic pollutants. Ran Y; Xiao B; Huang W; Peng P; Liu D; Fu J; Sheng G J Environ Qual; 2003; 32(5):1701-9. PubMed ID: 14535311 [TBL] [Abstract][Full Text] [Related]
8. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling. Zhang Y; Ma X; Ran Y Environ Pollut; 2014 Feb; 185():213-8. PubMed ID: 24286696 [TBL] [Abstract][Full Text] [Related]
9. Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants. Shi X; Fu H; Li Y; Mao J; Zheng S; Zhu D Environ Toxicol Chem; 2011 Jun; 30(6):1310-9. PubMed ID: 21425302 [TBL] [Abstract][Full Text] [Related]
10. Sorption and desorption hysteresis of organic contaminants by kerogen in a sandy aquifer material. Ran Y; Xiao B; Fu J; Sheng G Chemosphere; 2003 Mar; 50(10):1365-76. PubMed ID: 12586168 [TBL] [Abstract][Full Text] [Related]
11. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate. Ran Y; Xing B; Suresh P; Rao C; Fu J Environ Sci Technol; 2004 Aug; 38(16):4340-8. PubMed ID: 15382862 [TBL] [Abstract][Full Text] [Related]
12. Sorption of organic pollutants by marine sediments: implication for the role of particulate organic matter. Yu Z; Huang W; Song J; Qian Y; Peng P Chemosphere; 2006 Dec; 65(11):2493-501. PubMed ID: 16777187 [TBL] [Abstract][Full Text] [Related]
13. A distributed reactivity model for sorption by soils and sediments 13. Simulated diagenesis of natural sediment organic matter and its impact on sorption/desorption equilibria. Johnson MD; Huang W; Weber WJ Environ Sci Technol; 2001 Apr; 35(8):1680-7. PubMed ID: 11329720 [TBL] [Abstract][Full Text] [Related]
14. The role of condensed carbonaceous materials on the sorption of hydrophobic organic contaminants in subsurface sediments. Jeong S; Wander MM; Kleineidam S; Grathwohl P; Ligouis BS; Werth CJ Environ Sci Technol; 2008 Mar; 42(5):1458-64. PubMed ID: 18441788 [TBL] [Abstract][Full Text] [Related]
15. Sorption kinetics of organic contaminants by sandy aquifer and its kerogen isolate. Ran Y; Xing B; Rao PS; Sheng G; Fu J Environ Sci Technol; 2005 Mar; 39(6):1649-57. PubMed ID: 15819221 [TBL] [Abstract][Full Text] [Related]
16. Sorption/desorption reversibility of phenanthrene in soils and carbonaceous materials. Wang G; Kleineidam S; Grathwohl P Environ Sci Technol; 2007 Feb; 41(4):1186-93. PubMed ID: 17593717 [TBL] [Abstract][Full Text] [Related]
17. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter. Sander M; Pignatello JJ Environ Sci Technol; 2005 Oct; 39(19):7476-84. PubMed ID: 16245818 [TBL] [Abstract][Full Text] [Related]
18. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors. Guo X; Wang X; Zhou X; Ding X; Fu B; Tao S; Xing B Environ Sci Technol; 2013; 47(21):12148-55. PubMed ID: 24041398 [TBL] [Abstract][Full Text] [Related]
19. Desorption kinetics of phenanthrene in aquifer material lacks hysteresis. Kleineidam S; Rügner H; Grathwohl P Environ Sci Technol; 2004 Aug; 38(15):4169-75. PubMed ID: 15352457 [TBL] [Abstract][Full Text] [Related]
20. Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes. Endo S; Grathwohl P; Haderlein SB; Schmidt TC Environ Sci Technol; 2009 Jan; 43(2):393-400. PubMed ID: 19238970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]