BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15383292)

  • 41. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila.
    Coghlan A; Wolfe KH
    Genome Res; 2002 Jun; 12(6):857-67. PubMed ID: 12045140
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signal sequence analysis of protein sequences from the filarial nematode parasite Brugia malayi and the evolution of secreted proteins in parasites.
    Ying X; Chen X; Wang Y; Fang W; Luo D
    Parasitol Res; 2009 Jun; 104(6):1321-6. PubMed ID: 19165503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae.
    Kennedy BP; Aamodt EJ; Allen FL; Chung MA; Heschl MF; McGhee JD
    J Mol Biol; 1993 Feb; 229(4):890-908. PubMed ID: 8445654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative genomics in C. elegans, C. briggsae, and other Caenorhabditis species.
    Coghlan A; Stajich JE; Harris TW
    Methods Mol Biol; 2006; 351():13-29. PubMed ID: 16988423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differentially expressed, abundant trans-spliced cDNAs from larval Brugia malayi.
    Gregory WF; Blaxter ML; Maizels RM
    Mol Biochem Parasitol; 1997 Jul; 87(1):85-95. PubMed ID: 9233676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary dynamics of nematode operons: easy come, slow go.
    Qian W; Zhang J
    Genome Res; 2008 Mar; 18(3):412-21. PubMed ID: 18218978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. cut-1-like genes are present in the filarial nematodes, Brugia pahangi and Brugia malayi, and, as in other nematodes, code for components of the cuticle.
    Lewis E; Hunter SJ; Tetley L; Nunes CP; Bazzicalupo P; Devaney E
    Mol Biochem Parasitol; 1999 Jun; 101(1-2):173-83. PubMed ID: 10413052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts.
    Chevignon G; Foray V; Pérez-Jiménez MM; Libro S; Chung M; Foster JM; Landmann F
    PLoS Negl Trop Dis; 2021 Jan; 15(1):e0008935. PubMed ID: 33406151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification.
    Hoogewijs D; De Henau S; Dewilde S; Moens L; Couvreur M; Borgonie G; Vinogradov SN; Roy SW; Vanfleteren JR
    BMC Evol Biol; 2008 Oct; 8():279. PubMed ID: 18844991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans.
    Wilson R; Ainscough R; Anderson K; Baynes C; Berks M; Bonfield J; Burton J; Connell M; Copsey T; Cooper J
    Nature; 1994 Mar; 368(6466):32-8. PubMed ID: 7906398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes.
    Stepek G; McCormack G; Birnie AJ; Page AP
    Parasitology; 2011 Feb; 138(2):237-48. PubMed ID: 20800010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita.
    Iqbal S; Fosu-Nyarko J; Jones MG
    Funct Integr Genomics; 2016 Jul; 16(4):441-57. PubMed ID: 27126863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brugia malayi: whole genome amplification for genomic characterization of filarial parasites.
    McNulty SN; Weil GJ; Heinz M; Crosby SD; Fischer PU
    Exp Parasitol; 2008 Jun; 119(2):256-63. PubMed ID: 18359019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR-mediated Transfection of Brugia malayi.
    Liu C; Grote A; Ghedin E; Unnasch TR
    PLoS Negl Trop Dis; 2020 Aug; 14(8):e0008627. PubMed ID: 32866158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Case Report: Periorbital Filariasis Caused by
    Nunthanid P; Roongruanchai K; Wongkamchai S; Sarasombath PT
    Am J Trop Med Hyg; 2020 Dec; 103(6):2336-2338. PubMed ID: 32959768
    [No Abstract]   [Full Text] [Related]  

  • 56. CeRep25B forms chromosome-specific minisatellite arrays in Caenorhabditis elegans.
    Pilgrim D
    Genome Res; 1998 Nov; 8(11):1192-201. PubMed ID: 9847081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pattern of selective constraint in C. elegans and C. briggsae genomes.
    Shabalina SA; Kondrashov AS
    Genet Res; 1999 Aug; 74(1):23-30. PubMed ID: 10505405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic structure and 5' regulatory regions of the let-23 gene in the nematode C. elegans.
    Sakai T; Koga M; Ohshima Y
    J Mol Biol; 1996 Mar; 256(3):548-55. PubMed ID: 8604137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular cloning of a serine proteinase inhibitor from Brugia malayi.
    Yenbutr P; Scott AL
    Infect Immun; 1995 May; 63(5):1745-53. PubMed ID: 7729881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The tpa-1 gene of Caenorhabditis elegans encodes two proteins similar to Ca(2+)-independent protein kinase Cs: evidence by complete genomic and complementary DNA sequences of the tpa-1 gene.
    Sano T; Tabuse Y; Nishiwaki K; Miwa J
    J Mol Biol; 1995 Aug; 251(4):477-85. PubMed ID: 7658466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.