These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15383681)

  • 41. Translation Elongation and Recoding in Eukaryotes.
    Dever TE; Dinman JD; Green R
    Cold Spring Harb Perspect Biol; 2018 Aug; 10(8):. PubMed ID: 29610120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage.
    Penno C; Kumari R; Baranov PV; van Sinderen D; Atkins JF
    Nucleic Acids Res; 2017 Sep; 45(17):10143-10155. PubMed ID: 28973469
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Morpholinos to Control Gene Expression.
    Moulton JD
    Curr Protoc Nucleic Acid Chem; 2017 Mar; 68(1):4.30.1-4.30.29. PubMed ID: 28252184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.
    Zhong Z; Yang L; Zhang H; Shi J; Vandana JJ; Lam DT; Olsthoorn RC; Lu L; Chen G
    Sci Rep; 2016 Dec; 6():39549. PubMed ID: 28000744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
    Atkins JF; Loughran G; Bhatt PR; Firth AE; Baranov PV
    Nucleic Acids Res; 2016 Sep; 44(15):7007-78. PubMed ID: 27436286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression.
    Advani VM; Dinman JD
    Bioessays; 2016 Jan; 38(1):21-6. PubMed ID: 26661048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus.
    Gao F; Simon AE
    Nucleic Acids Res; 2016 Jan; 44(2):878-95. PubMed ID: 26578603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning.
    Baranov PV; Atkins JF; Yordanova MM
    Nat Rev Genet; 2015 Sep; 16(9):517-29. PubMed ID: 26260261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting.
    Caliskan N; Peske F; Rodnina MV
    Trends Biochem Sci; 2015 May; 40(5):265-74. PubMed ID: 25850333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation.
    Murat P; Tellam J
    Wiley Interdiscip Rev RNA; 2015; 6(2):157-71. PubMed ID: 25264139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders.
    Wojciechowska M; Olejniczak M; Galka-Marciniak P; Jazurek M; Krzyzosiak WJ
    Nucleic Acids Res; 2014 Oct; 42(19):11849-64. PubMed ID: 25217582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures.
    Yu CH; Teulade-Fichou MP; Olsthoorn RC
    Nucleic Acids Res; 2014 Feb; 42(3):1887-92. PubMed ID: 24178029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.
    Ritchie DB; Foster DA; Woodside MT
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16167-72. PubMed ID: 22988073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting.
    Lin Z; Gilbert RJ; Brierley I
    Nucleic Acids Res; 2012 Sep; 40(17):8674-89. PubMed ID: 22743270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms and implications of programmed translational frameshifting.
    Dinman JD
    Wiley Interdiscip Rev RNA; 2012; 3(5):661-73. PubMed ID: 22715123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting frameshifting in the human immunodeficiency virus.
    Brakier-Gingras L; Charbonneau J; Butcher SE
    Expert Opin Ther Targets; 2012 Mar; 16(3):249-58. PubMed ID: 22404160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stem-loop structures can effectively substitute for an RNA pseudoknot in -1 ribosomal frameshifting.
    Yu CH; Noteborn MH; Pleij CW; Olsthoorn RC
    Nucleic Acids Res; 2011 Nov; 39(20):8952-9. PubMed ID: 21803791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication.
    Ahn DG; Lee W; Choi JK; Kim SJ; Plant EP; Almazán F; Taylor DR; Enjuanes L; Oh JW
    Antiviral Res; 2011 Jul; 91(1):1-10. PubMed ID: 21549154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stimulation of ribosomal frameshifting by antisense LNA.
    Yu CH; Noteborn MH; Olsthoorn RC
    Nucleic Acids Res; 2010 Dec; 38(22):8277-83. PubMed ID: 20693527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional analysis of the SRV-1 RNA frameshifting pseudoknot.
    Olsthoorn RC; Reumerman R; Hilbers CW; Pleij CW; Heus HA
    Nucleic Acids Res; 2010 Nov; 38(21):7665-72. PubMed ID: 20639537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.