These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 15383913)
1. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista. Nozaki H; Matsuzaki M; Misumi O; Kuroiwa H; Hasegawa M; Higashiyama T; Shin-I T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2004 Jul; 59(1):103-13. PubMed ID: 15383913 [TBL] [Abstract][Full Text] [Related]
2. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
3. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. Nozaki H J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387 [TBL] [Abstract][Full Text] [Related]
4. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
5. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571 [TBL] [Abstract][Full Text] [Related]
6. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228 [TBL] [Abstract][Full Text] [Related]
7. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019 [TBL] [Abstract][Full Text] [Related]
8. EVOLUTIONARY ANALYSES OF THE NUCLEAR-ENCODED PHOTOSYNTHETIC GENE psbO FROM TERTIARY PLASTID-CONTAINING ALGAE IN DINOPHYTA(1). Yokoyama A; Takahashi F; Kataoka H; Hara Y; Nozaki H J Phycol; 2011 Apr; 47(2):407-14. PubMed ID: 27021871 [TBL] [Abstract][Full Text] [Related]
9. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Oborník M; Green BR Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae. Huerlimann R; Zenger KR; Jerry DR; Heimann K PLoS One; 2015; 10(7):e0131099. PubMed ID: 26131555 [TBL] [Abstract][Full Text] [Related]
11. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Cavalier-Smith T Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921 [TBL] [Abstract][Full Text] [Related]
12. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Li S; Nosenko T; Hackett JD; Bhattacharya D Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039 [TBL] [Abstract][Full Text] [Related]
13. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. Miyagishima SY; Nozaki H; Nishida K; Nishida K; Matsuzaki M; Kuroiwa T J Mol Evol; 2004 Mar; 58(3):291-303. PubMed ID: 15045484 [TBL] [Abstract][Full Text] [Related]
14. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Patron NJ; Inagaki Y; Keeling PJ Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896 [TBL] [Abstract][Full Text] [Related]
15. The single, ancient origin of chromist plastids. Yoon HS; Hackett JD; Pinto G; Bhattacharya D Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15507-12. PubMed ID: 12438651 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613 [TBL] [Abstract][Full Text] [Related]
17. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Ponce-Toledo RI; Deschamps P; López-García P; Zivanovic Y; Benzerara K; Moreira D Curr Biol; 2017 Feb; 27(3):386-391. PubMed ID: 28132810 [TBL] [Abstract][Full Text] [Related]
18. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Suzuki K; Miyagishima SY Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386 [TBL] [Abstract][Full Text] [Related]
19. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Smith DR; Arrigo KR; Alderkamp AC; Allen AE Mol Phylogenet Evol; 2014 Feb; 71():36-40. PubMed ID: 24216019 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary significance of the ring-like plastid nucleus in the primitive red alga Cyanidioschyzon merolae as revealed by drying. Kuroiwa T; Ohnuma M; Imoto Y; Yagisawa F; Misumi O; Nagata N; Kuroiwa H Protoplasma; 2020 Jul; 257(4):1069-1078. PubMed ID: 32185527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]