These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1538428)

  • 21. Predictive value of radiological criteria for disintegration rates of extracorporeal shock wave lithotripsy.
    Aeberli D; Müller S; Schmutz R; Schmid HP
    Urol Int; 2001; 66(3):127-30. PubMed ID: 11316972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics.
    Weld KJ; Montiglio C; Morris MS; Bush AC; Cespedes RD
    Urology; 2007 Dec; 70(6):1043-6; discussion 1046-7. PubMed ID: 18158009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of Renal Stones ≥20 mm with Extracorporeal Shock Wave Lithotripsy.
    Wu H; Wang J; Lu J; Wang Y; Niu Z
    Urol Int; 2016; 96(1):99-105. PubMed ID: 26551031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are stone protocol computed tomography scans mandatory for children with suspected urinary calculi?
    Johnson EK; Faerber GJ; Roberts WW; Wolf JS; Park JM; Bloom DA; Wan J
    Urology; 2011 Sep; 78(3):662-6. PubMed ID: 21722946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment philosophy and retreatment rates following piezoelectric lithotripsy.
    Fegan J; Camp LA; Wilson WT; Miller GL; Preminger GM
    J Urol; 1993 Jan; 149(1):12-4. PubMed ID: 8417191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renal calculi: sensitivity for detection with US.
    Middleton WD; Dodds WJ; Lawson TL; Foley WD
    Radiology; 1988 Apr; 167(1):239-44. PubMed ID: 3279456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive role of renal resistance indices in the extracorporeal shock-wave lithotripsy outcome of ureteral stones.
    Juan YS; Huang CH; Wang CJ; Chou YH; Chuang SM; Li CC; Shen JT; Wu WJ
    Scand J Urol Nephrol; 2008; 42(4):364-8. PubMed ID: 19230169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of extracorporeal shock wave lithotripsy in patients with aortic aneurysms.
    Thomas R; Cherry R; Neal DW
    J Urol; 1991 Aug; 146(2):409-10. PubMed ID: 1856943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible ureterorenoscopy versus extracorporeal shock wave lithotripsy for treatment of lower pole stones of 10-20 mm.
    El-Nahas AR; Ibrahim HM; Youssef RF; Sheir KZ
    BJU Int; 2012 Sep; 110(6):898-902. PubMed ID: 22372915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of extracorporeal shock wave lithotripsy on percutaneous stone procedures.
    Bush WH; Gibbons RP; Lewis GP; Brannen GE
    AJR Am J Roentgenol; 1986 Jul; 147(1):89-93. PubMed ID: 3487237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spiral stent versus standard stent in patients with midsize renal stones treated with extracorporeal shock wave lithotripsy: which stent works better? A prospective randomized trial.
    Gerber R; Nitz C; Studer UE; Danuser H
    J Urol; 2004 Sep; 172(3):965-6. PubMed ID: 15311010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between urinary tract pure stone composition and stone morphology on plain abdominal film.
    Wang SC; Hsu YS; Chen KK; Chang LS
    J Chin Med Assoc; 2004 May; 67(5):235-8. PubMed ID: 15357110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy.
    Dogan HS; Altan M; Citamak B; Bozaci AC; Karabulut E; Tekgul S
    J Pediatr Urol; 2015 Apr; 11(2):84.e1-6. PubMed ID: 25812469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of the technique of combination therapy for staghorn calculi: a decreasing role for extracorporeal shock wave lithotripsy.
    Lam HS; Lingeman JE; Mosbaugh PG; Steele RE; Knapp PM; Scott JW; Newman DM
    J Urol; 1992 Sep; 148(3 Pt 2):1058-62. PubMed ID: 1507330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracorporeal shock wave lithotripsy monotherapy for renal stones >25 mm in children.
    Shouman AM; Ziada AM; Ghoneim IA; Morsi HA
    Urology; 2009 Jul; 74(1):109-11. PubMed ID: 19428070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial.
    Pace KT; Tariq N; Dyer SJ; Weir MJ; D'A Honey RJ
    J Urol; 2001 Dec; 166(6):2065-71. PubMed ID: 11696708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Higher urinary potassium is associated with decreased stone growth after shock wave lithotripsy.
    Pierratos A; Dharamsi N; Carr LK; Ibanez D; Jewett MA; Honey RJ
    J Urol; 2000 Nov; 164(5):1486-9. PubMed ID: 11025688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracy of radiological features for predicting extracorporeal shock wave lithotripsy success for treatment of kidney calculi.
    Arshadi H; Dianat SS; Ganjehei L
    Urol J; 2009; 6(2):88-91. PubMed ID: 19472125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A rare complication of extracorporeal shock wave lithotripsy: rupture of the kidney. Apropos of a case].
    Seddiki A; Thomas J; Tobelem G; Ferriere X; Bellahouel S; Trouiller D; Arvis G
    J Urol (Paris); 1991; 97(4-5):224-7. PubMed ID: 1761869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Percutaneous nephrolithotomy versus extracorporeal shock wave lithotripsy for moderate sized kidney stones.
    Deem S; Defade B; Modak A; Emmett M; Martinez F; Davalos J
    Urology; 2011 Oct; 78(4):739-43. PubMed ID: 21664653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.