These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 15384532)

  • 21. A Novel Fabric-Based Versatile and Stiffness-Tunable Soft Gripper Integrating Soft Pneumatic Fingers and Wrist.
    Fei Y; Wang J; Pang W
    Soft Robot; 2019 Feb; 6(1):1-20. PubMed ID: 30312144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soft object deformation monitoring and learning for model-based robotic hand manipulation.
    Cretu AM; Payeur P; Petriu EM
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):740-53. PubMed ID: 22207640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Fingered Soft Pneumatic Gripper Integrating Joint-Tuning Capability.
    Liu L; Zhang J; Liu G; Zhu Z; Hu Q; Li P
    Soft Robot; 2022 Oct; 9(5):948-959. PubMed ID: 34705563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stiffness-Tunable Soft Gripper with Soft-Rigid Hybrid Actuation for Versatile Manipulations.
    Li L; Xie F; Wang T; Wang G; Tian Y; Jin T; Zhang Q
    Soft Robot; 2022 Dec; 9(6):1108-1119. PubMed ID: 35172109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling.
    Wang Y; Yang Z; Zhou H; Zhao C; Barimah B; Li B; Xiang C; Li L; Gou X; Luo M
    Soft Robot; 2022 Apr; 9(2):309-323. PubMed ID: 34107751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circular Shell Gripper for Handling Food Products.
    Wang Z; Kanegae R; Hirai S
    Soft Robot; 2021 Oct; 8(5):542-554. PubMed ID: 32822254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward autonomous avian-inspired grasping for micro aerial vehicles.
    Thomas J; Loianno G; Polin J; Sreenath K; Kumar V
    Bioinspir Biomim; 2014 Jun; 9(2):025010. PubMed ID: 24852023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid Pressure Monitoring-Based Strategy for Delicate Grasping of Fragile Objects by A Robotic Hand with Fluid Fingertips.
    Nishimura T; Suzuki Y; Tsuji T; Watanabe T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimode Grasping Soft Gripper Achieved by Layer Jamming Structure and Tendon-Driven Mechanism.
    Fang B; Sun F; Wu L; Liu F; Wang X; Huang H; Huang W; Liu H; Wen L
    Soft Robot; 2022 Apr; 9(2):233-249. PubMed ID: 34107748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping.
    Sui D; Zhu Y; Zhao S; Wang T; Agrawal SK; Zhang H; Zhao J
    Soft Robot; 2022 Feb; 9(1):36-56. PubMed ID: 33275516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming.
    Xu H; Jagannathan S
    IEEE Trans Neural Netw Learn Syst; 2013 Mar; 24(3):471-84. PubMed ID: 24808319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Integrated Multi-Sensor Network for Adaptive Grasping of Fragile Fruits: Design and Feasibility Tests.
    Xie Y; Zhang B; Zhou J; Bai Y; Zhang M
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a Two-Finger Haptic Robotic Hand with Novel Stiffness Detection and Impedance Control.
    Mohammadi V; Shahbad R; Hosseini M; Gholampour MH; Shiry Ghidary S; Najafi F; Behboodi A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Versatile Soft Robot Gripper Enabled by Stiffness and Adhesion Tuning via Thermoplastic Composite.
    Coulson R; Stabile CJ; Turner KT; Majidi C
    Soft Robot; 2022 Apr; 9(2):189-200. PubMed ID: 33481683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a novel two-finger variable reluctance gripper.
    Chan KK; Cheung NC
    ISA Trans; 2005 Apr; 44(2):177-85. PubMed ID: 15868857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear systems identification and control via dynamic multitime scales neural networks.
    Fu ZJ; Xie WF; Han X; Luo WD
    IEEE Trans Neural Netw Learn Syst; 2013 Nov; 24(11):1814-23. PubMed ID: 24808614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanically controlled robotic gripper with bistability for fast and adaptive grasping.
    Cai X; Tang B
    Bioinspir Biomim; 2022 Dec; 18(1):. PubMed ID: 36575867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and development of a sensorized cylindrical object for grasping assessment.
    Cordella F; Taffoni F; Raiano L; Carpino G; Pantoni M; Zollo L; Schena E; Guglielmelli E; Formica D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3366-3369. PubMed ID: 28269025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining Sensors Information to Enhance Pneumatic Grippers Performance.
    Romeo RA; Gesino M; Maggiali M; Fiorio L
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural Networks Enhanced Optimal Admittance Control of Robot-Environment Interaction Using Reinforcement Learning.
    Peng G; Chen CLP; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4551-4561. PubMed ID: 33651696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.