These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15384552)

  • 1. Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning.
    Arleo A; Smeraldi F; Gerstner W
    IEEE Trans Neural Netw; 2004 May; 15(3):639-52. PubMed ID: 15384552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity.
    Arleo A; Gerstner W
    Biol Cybern; 2000 Sep; 83(3):287-99. PubMed ID: 11007302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust self-localisation and navigation based on hippocampal place cells.
    Strösslin T; Sheynikhovich D; Chavarriaga R; Gerstner W
    Neural Netw; 2005 Nov; 18(9):1125-40. PubMed ID: 16263241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goal-oriented robot navigation learning using a multi-scale space representation.
    Llofriu M; Tejera G; Contreras M; Pelc T; Fellous JM; Weitzenfeld A
    Neural Netw; 2015 Dec; 72():62-74. PubMed ID: 26548944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-directed learning of features and forward models.
    Saeb S; Weber C; Triesch J
    Neural Netw; 2009; 22(5-6):586-92. PubMed ID: 19616917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-correction mechanism for path integration in a modular navigation system on the basis of an egocentric spatial map.
    Mudra R; Douglas RJ
    Neural Netw; 2003 Nov; 16(9):1373-88. PubMed ID: 14622890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of hippocampally dependent navigation, using the temporal difference learning rule.
    Foster DJ; Morris RG; Dayan P
    Hippocampus; 2000; 10(1):1-16. PubMed ID: 10706212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hippocampo-cortical loop: spatio-temporal learning and goal-oriented planning in navigation.
    Hirel J; Gaussier P; Quoy M; Banquet JP; Save E; Poucet B
    Neural Netw; 2013 Jul; 43():8-21. PubMed ID: 23500496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involving motor capabilities in the formation of sensory space representations.
    Weiller D; Märtin R; Dähne S; Engel AK; König P
    PLoS One; 2010 Apr; 5(4):e10377. PubMed ID: 20442849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust path integration in the entorhinal grid cell system with hippocampal feed-back.
    Samu D; Eros P; Ujfalussy B; Kiss T
    Biol Cybern; 2009 Jul; 101(1):19-34. PubMed ID: 19381679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of behavior-based and planning techniques on the small robot maze exploration problem.
    Slusný S; Neruda R; Vidnerová P
    Neural Netw; 2010 May; 23(4):560-7. PubMed ID: 20346859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Hebbian and reinforcement learning in a minibrain model.
    Bosman RJ; van Leeuwen WA; Wemmenhove B
    Neural Netw; 2004 Jan; 17(1):29-36. PubMed ID: 14690704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning slow features with reservoir computing for biologically-inspired robot localization.
    Antonelo E; Schrauwen B
    Neural Netw; 2012 Jan; 25(1):178-90. PubMed ID: 21945043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks.
    Weidel P; Duarte R; Morrison A
    Front Comput Neurosci; 2021; 15():543872. PubMed ID: 33746728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hierarchy of associations in hippocampo-cortical systems: cognitive maps and navigation strategies.
    Banquet JP; Gaussier P; Quoy M; Revel A; Burnod Y
    Neural Comput; 2005 Jun; 17(6):1339-84. PubMed ID: 15901401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.