These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
614 related articles for article (PubMed ID: 15384919)
1. The visual cycle of the cone photoreceptors of the retina. Wolf G Nutr Rev; 2004 Jul; 62(7 Pt 1):283-6. PubMed ID: 15384919 [TBL] [Abstract][Full Text] [Related]
2. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Mata NL; Radu RA; Clemmons RC; Travis GH Neuron; 2002 Sep; 36(1):69-80. PubMed ID: 12367507 [TBL] [Abstract][Full Text] [Related]
3. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration. Sato S; Kefalov VJ J Physiol; 2016 Nov; 594(22):6753-6765. PubMed ID: 27385534 [TBL] [Abstract][Full Text] [Related]
4. [Physiology of the visual retinal signal: From phototransduction to the visual cycle]. Salesse C J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721 [TBL] [Abstract][Full Text] [Related]
5. The role of retinol dehydrogenase 10 in the cone visual cycle. Xue Y; Sato S; Razafsky D; Sahu B; Shen SQ; Potter C; Sandell LL; Corbo JC; Palczewski K; Maeda A; Hodzic D; Kefalov VJ Sci Rep; 2017 May; 7(1):2390. PubMed ID: 28539612 [TBL] [Abstract][Full Text] [Related]
6. Vitamin A and Vision. Saari JC Subcell Biochem; 2016; 81():231-259. PubMed ID: 27830507 [TBL] [Abstract][Full Text] [Related]
7. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones. Sato S; Frederiksen R; Cornwall MC; Kefalov VJ Vis Neurosci; 2017 Jan; 34():E004. PubMed ID: 28359344 [TBL] [Abstract][Full Text] [Related]
8. Like night and day: rods and cones have different pigment regeneration pathways. Arshavsky V Neuron; 2002 Sep; 36(1):1-3. PubMed ID: 12367498 [TBL] [Abstract][Full Text] [Related]
9. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods. Kaylor JJ; Frederiksen R; Bedrosian CK; Huang M; Stennis-Weatherspoon D; Huynh T; Ngan T; Mulamreddy V; Sampath AP; Fain GL; Travis GH Curr Biol; 2024 Aug; 34(15):3342-3353.e6. PubMed ID: 38981477 [TBL] [Abstract][Full Text] [Related]
10. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes. Yamaoka H; Tachibanaki S; Kawamura S J Biol Chem; 2015 Oct; 290(40):24381-90. PubMed ID: 26286749 [TBL] [Abstract][Full Text] [Related]
11. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Kryger Z; Galli-Resta L; Jacobs GH; Reese BE Vis Neurosci; 1998; 15(4):685-91. PubMed ID: 9682870 [TBL] [Abstract][Full Text] [Related]
12. Vitamin A metabolism in rod and cone visual cycles. Saari JC Annu Rev Nutr; 2012 Aug; 32():125-45. PubMed ID: 22809103 [TBL] [Abstract][Full Text] [Related]
13. The First Steps of the Visual Cycle in Human Rod and Cone Photoreceptors. Chen C; Adler L; Milliken C; Rahman B; Kono M; Perry LP; Gonzalez-Fernandez F; Koutalos Y Invest Ophthalmol Vis Sci; 2024 Jul; 65(8):9. PubMed ID: 38958967 [TBL] [Abstract][Full Text] [Related]
14. In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death. Samardzija M; Tanimoto N; Kostic C; Beck S; Oberhauser V; Joly S; Thiersch M; Fahl E; Arsenijevic Y; von Lintig J; Wenzel A; Seeliger MW; Grimm C Hum Mol Genet; 2009 Apr; 18(7):1266-75. PubMed ID: 19147682 [TBL] [Abstract][Full Text] [Related]
15. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. Ala-Laurila P; Kolesnikov AV; Crouch RK; Tsina E; Shukolyukov SA; Govardovskii VI; Koutalos Y; Wiggert B; Estevez ME; Cornwall MC J Gen Physiol; 2006 Aug; 128(2):153-69. PubMed ID: 16847097 [TBL] [Abstract][Full Text] [Related]
16. DISCO! Dissociation of cone opsins: the fast and noisy life of cones explained. Travis GH Neuron; 2005 Jun; 46(6):840-2. PubMed ID: 15953411 [TBL] [Abstract][Full Text] [Related]
17. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments. Li S; Sato K; Gordon WC; Sendtner M; Bazan NG; Jin M J Biol Chem; 2018 Sep; 293(39):15256-15268. PubMed ID: 30115683 [TBL] [Abstract][Full Text] [Related]
18. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. Kefalov VJ J Biol Chem; 2012 Jan; 287(3):1635-41. PubMed ID: 22074928 [TBL] [Abstract][Full Text] [Related]
19. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. Ala-Laurila P; Cornwall MC; Crouch RK; Kono M J Biol Chem; 2009 Jun; 284(24):16492-16500. PubMed ID: 19386593 [TBL] [Abstract][Full Text] [Related]