BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 15384994)

  • 1. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
    Zhang J; Koert A; Gellman B; Gempp TM; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    ASAIO J; 2007; 53(1):23-31. PubMed ID: 17237645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
    Zhu L; Zhang X; Yao Z
    Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump.
    Triep M; Brücker C; Schröder W; Siess T
    Artif Organs; 2006 May; 30(5):384-91. PubMed ID: 16683957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inlet and outlet devices for rotary blood pumps.
    Song X; Wood HG; Allaire PE; Antaki JF; Olsen DB
    Artif Organs; 2004 Oct; 28(10):911-5. PubMed ID: 15384997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.
    Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE
    Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow analysis for the secondary impeller of an IVAS heart pump.
    Nakamura S; Ding W; Smith WA; Golding LA
    ASAIO J; 1997; 43(5):M773-7. PubMed ID: 9360151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
    Burgreen GW; Loree HM; Bourque K; Dague C; Poirier VL; Farrar D; Hampton E; Wu ZJ; Gempp TM; Schöb R
    Artif Organs; 2004 Oct; 28(10):874-80. PubMed ID: 15384992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad.
    Kerkhoffs W; Schumacher O; Meyns B; Verbeken E; Leunens V; Bollen H; Reul H
    Artif Organs; 2004 Oct; 28(10):904-10. PubMed ID: 15384996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing.
    Chan WK; Ooi KT; Loh YC
    Artif Organs; 2007 Jun; 31(6):434-40. PubMed ID: 17537055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of an axial flow pediatric ventricular assist device.
    Throckmorton AL; Untaroiu A; Allaire PE; Wood HG; Matherne GP; Lim DS; Peeler BB; Olsen DB
    Artif Organs; 2004 Oct; 28(10):881-91. PubMed ID: 15384993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.