BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15384998)

  • 1. Concept for a new hydrodynamic blood bearing for miniature blood pumps.
    Kink T; Reul H
    Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time studies of the pivot bearings in the NEDO Gyro PI-710 centrifugal blood pump.
    Asai T; Watanabe K; Ito S; Tsujimura S; Motomura T; Shinohara T; Glueck JA; Nosé Y
    Artif Organs; 2004 Oct; 28(10):899-903. PubMed ID: 15384995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing.
    Chan WK; Ooi KT; Loh YC
    Artif Organs; 2007 Jun; 31(6):434-40. PubMed ID: 17537055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnevad--the world's smallest magnetic-bearing turbo pump.
    Goldowsky M
    Artif Organs; 2004 Oct; 28(10):945-52. PubMed ID: 15385003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump.
    Han Q; Zou J; Ruan X; Fu X; Yang H
    Artif Organs; 2012 Aug; 36(8):739-46. PubMed ID: 22747897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inlet and outlet devices for rotary blood pumps.
    Song X; Wood HG; Allaire PE; Antaki JF; Olsen DB
    Artif Organs; 2004 Oct; 28(10):911-5. PubMed ID: 15384997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.
    Ren Z; Jahanmir S; Heshmat H; Hunsberger AZ; Walton JF
    ASAIO J; 2009; 55(4):340-7. PubMed ID: 19381082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a small centrifugal blood pump with magnetic bearings.
    Jahanmir S; Hunsberger AZ; Ren Z; Heshmat H; Heshmat C; Tomaszewski MJ; Walton JF
    Artif Organs; 2009 Sep; 33(9):714-26. PubMed ID: 19775263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and analytical performance evaluation of short circular hydrodynamic journal bearings used in rotary blood pumps.
    Boehning F; Timms D; Hsu PL; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2013 Oct; 37(10):913-20. PubMed ID: 23634963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.
    Mitamura Y; Kido K; Yano T; Sakota D; Yambe T; Sekine K; OKamoto E
    Artif Organs; 2007 Mar; 31(3):221-4. PubMed ID: 17343698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow visualization in a centrifugal blood pump with an eccentric inlet port.
    Yamane T; Kodama T; Yamamoto Y; Shinohara T; Nosé Y
    Artif Organs; 2004 Jun; 28(6):564-70. PubMed ID: 15153149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cool seal system: a practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps.
    Yamazaki K; Mori T; Tomioka J; Litwak P; Antaki JF; Tagusari O; Koyanagi H; Griffith BP; Kormos RL
    ASAIO J; 1997; 43(5):M567-71. PubMed ID: 9360108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps.
    Amaral F; Egger C; Steinseifer U; Schmitz-Rode T
    Artif Organs; 2013 Sep; 37(9):786-92. PubMed ID: 23980561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump.
    Jiang M; Sakota D; Kosaka R; Hijikata W
    J Artif Organs; 2022 Sep; 25(3):195-203. PubMed ID: 35088287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH.
    Greatrex NA; Timms DL; Kurita N; Palmer EW; Masuzawa T
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):714-21. PubMed ID: 19822465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.