BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 15385164)

  • 21. Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility.
    Ahmed MU; Maurya AK; Cheng L; Jorge EC; Schubert FR; Maire P; Basson MA; Ingham PW; Dietrich S
    Dev Biol; 2017 Oct; 430(1):90-104. PubMed ID: 28807781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite.
    Ben-Yair R; Kahane N; Kalcheim C
    Development; 2003 Sep; 130(18):4325-36. PubMed ID: 12900449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential regulation of epaxial and hypaxial muscle development by paraxis.
    Wilson-Rawls J; Hurt CR; Parsons SM; Rawls A
    Development; 1999 Dec; 126(23):5217-29. PubMed ID: 10556048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis.
    Grimaldi A; Tettamanti G; Martin BL; Gaffield W; Pownall ME; Hughes SM
    Development; 2004 Jul; 131(14):3249-62. PubMed ID: 15201218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle.
    Nagashima H; Uchida K; Yamamoto K; Kuraku S; Usuda R; Kuratani S
    Dev Dyn; 2005 Jan; 232(1):149-61. PubMed ID: 15580555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome.
    Olivera-Martinez I; Missier S; Fraboulet S; Thélu J; Dhouailly D
    Development; 2002 Oct; 129(20):4763-72. PubMed ID: 12361968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation.
    McDermott A; Gustafsson M; Elsam T; Hui CC; Emerson CP; Borycki AG
    Development; 2005 Jan; 132(2):345-57. PubMed ID: 15604102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The formation of somite compartments in the avian embryo.
    Brand-Saberi B; Wilting J; Ebensperger C; Christ B
    Int J Dev Biol; 1996 Feb; 40(1):411-20. PubMed ID: 8735956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hypaxial origin of the epaxially located rhomboid muscles.
    Saberi M; Pu Q; Valasek P; Norizadeh-Abbariki T; Patel K; Huang R
    Ann Anat; 2017 Nov; 214():15-20. PubMed ID: 28655569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis.
    Amthor H; Connolly D; Patel K; Brand-Saberi B; Wilkinson DG; Cooke J; Christ B
    Dev Biol; 1996 Sep; 178(2):343-62. PubMed ID: 8812134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early stages of chick somite development.
    Christ B; Ordahl CP
    Anat Embryol (Berl); 1995 May; 191(5):381-96. PubMed ID: 7625610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation.
    Schmidt C; Stoeckelhuber M; McKinnell I; Putz R; Christ B; Patel K
    Dev Biol; 2004 Jul; 271(1):198-209. PubMed ID: 15196961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MyoD and Myf-5 define the specification of musculature of distinct embryonic origin.
    Kablar B; Asakura A; Krastel K; Ying C; May LL; Goldhamer DJ; Rudnicki MA
    Biochem Cell Biol; 1998; 76(6):1079-91. PubMed ID: 10392718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three developmental compartments involved in rib formation.
    Aoyama H; Mizutani-koseki S; Koseki H
    Int J Dev Biol; 2005; 49(2-3):325-33. PubMed ID: 15906248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of dorsoventral somite patterning by Wnt-1 and beta-catenin.
    Capdevila J; Tabin C; Johnson RL
    Dev Biol; 1998 Jan; 193(2):182-94. PubMed ID: 9473323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites.
    Borycki A; Brown AM; Emerson CP
    Development; 2000 May; 127(10):2075-87. PubMed ID: 10769232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of somite patterning by signals from the lateral plate.
    Pourquié O; Coltey M; Bréant C; Le Douarin NM
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3219-23. PubMed ID: 7724542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A proliferative role for Wnt-3a in chick somites.
    Galli LM; Willert K; Nusse R; Yablonka-Reuveni Z; Nohno T; Denetclaw W; Burrus LW
    Dev Biol; 2004 May; 269(2):489-504. PubMed ID: 15110715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sonic hedgehog is a survival factor for hypaxial muscles during mouse development.
    Krüger M; Mennerich D; Fees S; Schäfer R; Mundlos S; Braun T
    Development; 2001 Mar; 128(5):743-52. PubMed ID: 11171399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirement of the paraxis gene for somite formation and musculoskeletal patterning.
    Burgess R; Rawls A; Brown D; Bradley A; Olson EN
    Nature; 1996 Dec; 384(6609):570-3. PubMed ID: 8955271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.