These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15385594)

  • 1. Slow adaptation in fast-spiking neurons of visual cortex.
    Descalzo VF; Nowak LG; Brumberg JC; McCormick DA; Sanchez-Vives MV
    J Neurophysiol; 2005 Feb; 93(2):1111-8. PubMed ID: 15385594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses.
    Nowak LG; Azouz R; Sanchez-Vives MV; Gray CM; McCormick DA
    J Neurophysiol; 2003 Mar; 89(3):1541-66. PubMed ID: 12626627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model.
    Puccini GD; Sanchez-Vives MV; Compte A
    J Physiol Paris; 2006; 100(1-3):1-15. PubMed ID: 17095200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation and temporal decorrelation by single neurons in the primary visual cortex.
    Wang XJ; Liu Y; Sanchez-Vives MV; McCormick DA
    J Neurophysiol; 2003 Jun; 89(6):3279-93. PubMed ID: 12649312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics.
    Tateno T; Robinson HP
    J Neurophysiol; 2006 Apr; 95(4):2650-63. PubMed ID: 16551842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.
    Duong T; Freeman RD
    J Neurophysiol; 2007 Jul; 98(1):187-95. PubMed ID: 17428911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of persistent sodium currents to spike-frequency adaptation in rat hypoglossal motoneurons.
    Zeng J; Powers RK; Newkirk G; Yonkers M; Binder MD
    J Neurophysiol; 2005 Feb; 93(2):1035-41. PubMed ID: 15356185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons.
    La Camera G; Rauch A; Thurbon D; Lüscher HR; Senn W; Fusi S
    J Neurophysiol; 2006 Dec; 96(6):3448-64. PubMed ID: 16807345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR
    J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation in the visual cortex: influence of membrane trajectory and neuronal firing pattern on slow afterpotentials.
    Descalzo VF; Gallego R; Sanchez-Vives MV
    PLoS One; 2014; 9(11):e111578. PubMed ID: 25380063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input and frequency-specific entrainment of postsynaptic firing by IPSPs of perisomatic or dendritic origin.
    Tamás G; Szabadics J; Lörincz A; Somogyi P
    Eur J Neurosci; 2004 Nov; 20(10):2681-90. PubMed ID: 15548211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images.
    Maldonado P; Babul C; Singer W; Rodriguez E; Berger D; Grün S
    J Neurophysiol; 2008 Sep; 100(3):1523-32. PubMed ID: 18562559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of firing patterns in fast-spiking cortical interneurons.
    Golomb D; Donner K; Shacham L; Shlosberg D; Amitai Y; Hansel D
    PLoS Comput Biol; 2007 Aug; 3(8):e156. PubMed ID: 17696606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balanced inhibition and excitation underlies spike firing regularity in ventral cochlear nucleus chopper neurons.
    Paolini AG; Clarey JC; Needham K; Clark GM
    Eur J Neurosci; 2005 Mar; 21(5):1236-48. PubMed ID: 15813933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrophysiological properties of inhibitory neurones in cultured dissociated hippocampal cells].
    Moskaliuk AO; Kolodin IuO; Kravchenko MO; Fedulova SA; Veselovs'kyĭ MS
    Fiziol Zh (1994); 2004; 50(4):42-9. PubMed ID: 15460026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.