These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
691 related articles for article (PubMed ID: 15385680)
1. Measurements of environmental background radiation at location of coal-fired power plants. Adrovic F; Prokić M; Ninković MM; Glisić R Radiat Prot Dosimetry; 2004; 112(3):439-42. PubMed ID: 15385680 [TBL] [Abstract][Full Text] [Related]
2. Measurements of environmental terrestrial gamma radiation dose rate in three mountainous locations in the western region of Saudi Arabia. Al-Ghorabie FH Environ Res; 2005 Jun; 98(2):160-6. PubMed ID: 15820721 [TBL] [Abstract][Full Text] [Related]
3. Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity. Gür F; Yaprak G J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1900-8. PubMed ID: 20981605 [TBL] [Abstract][Full Text] [Related]
4. Estimate of the dose-increment due to outdoor exposure to gamma rays from uranium progeny deposited on the soil around a coal-fired power plant in Ajka Town, Hungary. Papp Z; Dezsö Z Health Phys; 2003 Jun; 84(6):709-17. PubMed ID: 12822580 [TBL] [Abstract][Full Text] [Related]
5. Investigation of occupational radiation exposures to NORM at an Irish peat-fired power station and potential use of peat fly ash by the construction industry. Organo C; Lee EM; Menezes G; Finch EC J Radiol Prot; 2005 Dec; 25(4):461-74. PubMed ID: 16340073 [TBL] [Abstract][Full Text] [Related]
6. Estimation of radon exhalation rate, natural radioactivity and radiation doses in fly ash samples from Durgapur thermal power plant, West Bengal, India. Mahur AK; Kumar R; Sengupta D; Prasad R J Environ Radioact; 2008 Aug; 99(8):1289-93. PubMed ID: 18467012 [TBL] [Abstract][Full Text] [Related]
7. Population dose in the vicinity of closed Hungarian uranium mine. Gorjánácz Z; Várhegyi A; Kovács T; Somlai J Radiat Prot Dosimetry; 2006; 118(4):448-52. PubMed ID: 16436520 [TBL] [Abstract][Full Text] [Related]
8. ²²⁶Ra, ²³²Th and ⁴⁰K radionuclides enhancement rate and dose assessment for residues of lignite-fired thermal power plants in Turkey. Parmaksiz A; Arikan P; Vural M; Yeltepe E; Tükenmez I Radiat Prot Dosimetry; 2011 Nov; 147(4):548-54. PubMed ID: 21217134 [TBL] [Abstract][Full Text] [Related]
9. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo. Hasani F; Shala F; Xhixha G; Xhixha MK; Hodolli G; Kadiri S; Bylyku E; Cfarku F J Environ Radioact; 2014 Dec; 138():156-61. PubMed ID: 25233215 [TBL] [Abstract][Full Text] [Related]
10. Radionuclides in effluent from coal mines, a coal-fired power plant, and a phosphate processing plant in Zasavje, Slovenia (Yugoslavia). Kobal I; Brajnik D; Kaluza F; Vengust M Health Phys; 1990 Jan; 58(1):81-5. PubMed ID: 2294078 [No Abstract] [Full Text] [Related]
11. Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan. Tsai TL; Lin CC; Wang TW; Chu TC J Radiol Prot; 2008 Sep; 28(3):347-60. PubMed ID: 18714131 [TBL] [Abstract][Full Text] [Related]
12. Inhalation and external doses in coastal villages of high background radiation area in Kollam, India. Ben Byju S; Koya PK; Sahoo BK; Jojo PJ; Chougaonkar MP; Mayya YS Radiat Prot Dosimetry; 2012 Nov; 152(1-3):154-8. PubMed ID: 22961502 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of radiation dose from a coal-fired power plant. Nakaoka A; Takagi S; Fukushima M; Ichikawa Y Health Phys; 1985 Feb; 48(2):215-20. PubMed ID: 3972587 [No Abstract] [Full Text] [Related]
14. Measurements of indoor gamma radiation dose in At-Taif city, Saudi Arabia using CaSO4:Dy (TLD-900). Al-Ghorabie FH Radiat Prot Dosimetry; 2005; 113(2):178-84. PubMed ID: 15585518 [TBL] [Abstract][Full Text] [Related]
15. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. Papastefanou C J Environ Radioact; 2010 Mar; 101(3):191-200. PubMed ID: 20005612 [TBL] [Abstract][Full Text] [Related]
16. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Ito S; Yokoyama T; Asakura K Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907 [TBL] [Abstract][Full Text] [Related]
17. The radiological impact from airborne routine discharges of a modern coal-fired power plant. Zeevaert T; Sweeck L; Vanmarcke H J Environ Radioact; 2006; 85(1):1-22. PubMed ID: 15990204 [TBL] [Abstract][Full Text] [Related]
18. Comparison of natural background dose rates for residents of the Amargosa Valley, NV, to those in Leadville, CO, and the states of Colorado and Nevada. Moeller DW; Sun LS Health Phys; 2006 Oct; 91(4):338-53. PubMed ID: 16966877 [TBL] [Abstract][Full Text] [Related]
19. Ambient gamma radiation levels (indoor and outdoor) in the villages around Jaduguda (India) using card-based CaSO₄: Dy TL dosemeters. Maharana M; Swarnkar M; Chougaonkar MP; Mayya YS; Sengupta D Radiat Prot Dosimetry; 2011 Jan; 143(1):88-96. PubMed ID: 21112888 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Reddy MS; Basha S; Joshi HV; Jha B J Hazard Mater; 2005 Aug; 123(1-3):242-9. PubMed ID: 15916850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]