These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15385882)

  • 21. The effect of seat belt use on the cervical electromyogram response to whiplash-type impacts.
    Kumar S; Ferrari R; Narayan Y; Jones T
    J Manipulative Physiol Ther; 2006 Feb; 29(2):115-25. PubMed ID: 16461170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of right anterolateral impacts: the effect of head rotation on the cervical muscle whiplash response.
    Kumar S; Ferrari R; Narayan Y
    J Neuroeng Rehabil; 2005 May; 2():11. PubMed ID: 15927056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.
    Hedenstierna S; Halldin P; Siegmund GP
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinematic and electromyographic response to whiplash loading in low-velocity whiplash impacts--a review.
    Kumar S; Ferrari R; Narayan Y
    Clin Biomech (Bristol, Avon); 2005 May; 20(4):343-56. PubMed ID: 15737441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating cervical muscle response and head kinematics during right, left, frontal and rear-seated perturbations.
    Sacher N; Frayne RJ; Dickey JP
    Traffic Inj Prev; 2012 Sep; 13(5):529-36. PubMed ID: 22931183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Power spectra of sternocleidomastoids, splenius capitis, and upper trapezius in oblique exertions.
    Kumar S; Narayan Y; Amell T
    Spine J; 2003; 3(5):339-50. PubMed ID: 14588944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of sternocleidomastoid muscle in simulated low velocity rear-end impacts.
    Hernández IA; Fyfe KR; Heo G; Major PW
    Eur Spine J; 2006 Jun; 15(6):876-85. PubMed ID: 16133079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of trunk flexion on cervical muscle EMG to rear impacts.
    Kumar S; Ferrari R; Narayan Y
    J Orthop Res; 2005 Sep; 23(5):1105-11. PubMed ID: 15908160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Masticatory muscle reaction in simulated low-velocity rear-end impacts.
    Hernández IA; Fyfe KR; Heo G; Major PW
    J Orofac Pain; 2006; 20(3):199-207. PubMed ID: 16913429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loud preimpact tones reduce the cervical multifidus muscle response during rear-end collisions: a potential method for reducing whiplash injuries.
    Mang DW; Siegmund GP; Brown HJ; Goonetilleke SC; Blouin JS
    Spine J; 2015 Jan; 15(1):153-61. PubMed ID: 25110275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cervical electromyographic activity during low-speed rear impact.
    Magnusson ML; Pope MH; Hasselquist L; Bolte KM; Ross M; Goel VK; Lee JS; Spratt K; Clark CR; Wilder DG
    Eur Spine J; 1999; 8(2):118-25. PubMed ID: 10333150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromyography of superficial cervical muscles with exertion in the sagittal, coronal and oblique planes.
    Kumar S; Narayan Y; Amell T; Ferrari R
    Eur Spine J; 2002 Feb; 11(1):27-37. PubMed ID: 11931061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do "whiplash injuries" occur in low-speed rear impacts?
    Castro WH; Schilgen M; Meyer S; Weber M; Peuker C; Wörtler K
    Eur Spine J; 1997; 6(6):366-75. PubMed ID: 9455663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations.
    Siegmund GP; Sanderson DJ; Myers BS; Inglis JT
    J Biomech; 2003 Apr; 36(4):473-82. PubMed ID: 12600337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury.
    Vasavada AN; Brault JR; Siegmund GP
    Spine (Phila Pa 1976); 2007 Apr; 32(7):756-65. PubMed ID: 17414909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-activation and muscle activity during frontal impact in relation to whiplash associated disorders.
    Fanta O; Hadraba D; Lopot F; Kubovy P; Boucek J; Jelen K
    Neuro Endocrinol Lett; 2013; 34(7):708-16. PubMed ID: 24464011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Awareness affects the response of human subjects exposed to a single whiplash-like perturbation.
    Siegmund GP; Sanderson DJ; Myers BS; Inglis JT
    Spine (Phila Pa 1976); 2003 Apr; 28(7):671-9. PubMed ID: 12671354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attenuation of human neck muscle activity following repeated imposed trunk-forward linear acceleration.
    Blouin JS; Descarreaux M; Bélanger-Gravel A; Simoneau M; Teasdale N
    Exp Brain Res; 2003 Jun; 150(4):458-64. PubMed ID: 12739089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neck Muscle and Head/Neck Kinematic Responses While Bracing Against the Steering Wheel During Front and Rear Impacts.
    Fice JB; Mang DWH; Ólafsdóttir JM; Brolin K; Cripton PA; Blouin JS; Siegmund GP
    Ann Biomed Eng; 2021 Mar; 49(3):1069-1082. PubMed ID: 33215369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.