These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15386179)

  • 1. Remediation of contaminated soil by amendment of nonhumus soil with humus-rich soil for better metal immobilization.
    Misra V; Pandey SD
    Bull Environ Contam Toxicol; 2004 Sep; 73(3):561-7. PubMed ID: 15386179
    [No Abstract]   [Full Text] [Related]  

  • 2. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments.
    Gramss G; Voigt KD; Bublitz F; Bergmann H
    J Basic Microbiol; 2003; 43(6):483-98. PubMed ID: 14625899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.
    Derakhshan Nejad Z; Jung MC; Kim KH
    Environ Geochem Health; 2018 Jun; 40(3):927-953. PubMed ID: 28447234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of metal contaminated soil with mineral-amended composts.
    van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK
    Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace metal sorption ability of insolubilized humic acids.
    Varrault G; Bermond A
    Environ Technol; 2002 Apr; 23(4):421-8. PubMed ID: 12088369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.
    Ren WX; Li PJ; Geng Y; Li XJ
    J Hazard Mater; 2009 Aug; 167(1-3):164-9. PubMed ID: 19232463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Elsholtzia splendens, soil amendments, and soil managements on Cu, Pb, Zn and Cd fractionation and solubilization in soil under field conditions.
    Peng HY; Yang XE
    Bull Environ Contam Toxicol; 2007 May; 78(5):384-9. PubMed ID: 17618382
    [No Abstract]   [Full Text] [Related]  

  • 13. Study on the possibility of hydrogen peroxide pretreatment and plant system to remediate soil pollution.
    Lin Q; Chen Y; Wang Z; Wang Y
    Chemosphere; 2004 Dec; 57(10):1439-47. PubMed ID: 15519388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between heavy metals and nitrogen fertilizers applied to soil-vegetable systems.
    Zhou Q
    Bull Environ Contam Toxicol; 2003 Aug; 71(2):338-44. PubMed ID: 14560386
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.
    de la Fuente C; Clemente R; Bernal MP
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters.
    Ayyasamy PM; Chun S; Lee S
    J Hazard Mater; 2009 Jan; 161(2-3):1095-102. PubMed ID: 18541365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of pentachlorophenol in soil using carbonaceous material amendments.
    Wen B; Li RJ; Zhang S; Shan XQ; Fang J; Xiao K; Khan SU
    Environ Pollut; 2009 Mar; 157(3):968-74. PubMed ID: 19028411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of heavy metal-contaminated land by trees--a review.
    Pulford ID; Watson C
    Environ Int; 2003 Jul; 29(4):529-40. PubMed ID: 12705950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.