These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 15386240)
1. Mechanical significance of femoral head trabecular bone structure in Loris and Galago evaluated using micromechanical finite element models. Ryan TM; van Rietbergen B Am J Phys Anthropol; 2005 Jan; 126(1):82-96. PubMed ID: 15386240 [TBL] [Abstract][Full Text] [Related]
2. Angular orientation of trabecular bone in the femoral head and its relationship to hip joint loads in leaping primates. Ryan TM; Ketcham RA J Morphol; 2005 Sep; 265(3):249-63. PubMed ID: 15690365 [TBL] [Abstract][Full Text] [Related]
3. A comparison of the femoral head and neck trabecular architecture of Galago and Perodicticus using micro-computed tomography (microCT). MacLatchy L; Müller R J Hum Evol; 2002 Jul; 43(1):89-105. PubMed ID: 12098212 [TBL] [Abstract][Full Text] [Related]
4. Femoral mechanics in the lesser bushbaby (Galago senegalensis): structural adaptations to leaping in primates. Burr DB; Piotrowski G; Martin RB; Cook PN Anat Rec; 1982 Mar; 202(3):419-29. PubMed ID: 7072986 [TBL] [Abstract][Full Text] [Related]
5. The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. Ryan TM; Ketcham RA J Hum Evol; 2002 Jul; 43(1):1-26. PubMed ID: 12098207 [TBL] [Abstract][Full Text] [Related]
6. A biomechanical investigation into the absence of leaping in the locomotor repertoire of the slender loris (Loris tardigradus). Sellers WI Folia Primatol (Basel); 1996; 67(1):1-14. PubMed ID: 8990515 [TBL] [Abstract][Full Text] [Related]
7. Assessing the accuracy of high-resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sections. Fajardo RJ; Ryan TM; Kappelman J Am J Phys Anthropol; 2002 May; 118(1):1-10. PubMed ID: 11953940 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization. Boyle C; Kim IY J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341 [TBL] [Abstract][Full Text] [Related]
9. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
10. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372 [TBL] [Abstract][Full Text] [Related]
11. Mechanical stimulation of tissue repair in the hydraulic bone chamber. Guldberg RE; Caldwell NJ; Guo XE; Goulet RW; Hollister SJ; Goldstein SA J Bone Miner Res; 1997 Aug; 12(8):1295-302. PubMed ID: 9258761 [TBL] [Abstract][Full Text] [Related]
12. Contact finite element stress analysis of the hip joint. Rapperport DJ; Carter DR; Schurman DJ J Orthop Res; 1985; 3(4):435-46. PubMed ID: 4067702 [TBL] [Abstract][Full Text] [Related]
13. Trabecular bone tissue strains in the healthy and osteoporotic human femur. Van Rietbergen B; Huiskes R; Eckstein F; Rüegsegger P J Bone Miner Res; 2003 Oct; 18(10):1781-8. PubMed ID: 14584888 [TBL] [Abstract][Full Text] [Related]
14. Nonhuman anthropoid primate femoral neck trabecular architecture and its relationship to locomotor mode. Fajardo RJ; Müller R; Ketcham RA; Colbert M Anat Rec (Hoboken); 2007 Apr; 290(4):422-36. PubMed ID: 17514766 [TBL] [Abstract][Full Text] [Related]
15. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138 [TBL] [Abstract][Full Text] [Related]
16. Physiologically based boundary conditions in finite element modelling. Speirs AD; Heller MO; Duda GN; Taylor WR J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504 [TBL] [Abstract][Full Text] [Related]
17. [Prediction of femoral remodeling after implantation of artifical femoral head]. Gao Z; Zhao C; Yu Q; Wu D; Yu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):295-8. PubMed ID: 12856602 [TBL] [Abstract][Full Text] [Related]
18. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling. Be'ery-Lipperman M; Gefen A Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155 [TBL] [Abstract][Full Text] [Related]
19. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Verhulp E; van Rietbergen B; Huiskes R Bone; 2008 Jan; 42(1):30-5. PubMed ID: 17977813 [TBL] [Abstract][Full Text] [Related]
20. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]