These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15386402)

  • 1. In vitro analysis of anionic collagen scaffolds for bone repair.
    Moreira PL; An YH; Santos AR; Genari SC
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):229-37. PubMed ID: 15386402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of anionic collagen matrix as scaffold for bone healing.
    Rocha LB; Goissis G; Rossi MA
    Biomaterials; 2002 Jan; 23(2):449-56. PubMed ID: 11761165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine osteoblasts cultured on polyanionic collagen scaffolds: an ultrastructural and immunocytochemical study.
    da Luz Moreira P; Genari SC; Goissis G; Galembeck F; An YH; Santos AR
    J Biomed Mater Res B Appl Biomater; 2013 Jan; 101(1):18-27. PubMed ID: 22987821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteocalcin/fibronectin-functionalized collagen matrices for bone tissue engineering.
    Kim SG; Lee DS; Lee S; Jang JH
    J Biomed Mater Res A; 2015 Jun; 103(6):2133-40. PubMed ID: 25346429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering.
    Amruthwar SS; Janorkar AV
    Dent Mater; 2013 Feb; 29(2):211-20. PubMed ID: 23127995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell behaviour on phospholipids-coated surfaces.
    Bosetti M; Santin M; Lloyd AW; Denyer SP; Sabbatini M; Cannas M
    J Mater Sci Mater Med; 2007 Apr; 18(4):611-7. PubMed ID: 17546421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation.
    Miron RJ; Bosshardt DD; Hedbom E; Zhang Y; Haenni B; Buser D; Sculean A
    J Periodontol; 2012 Jul; 83(7):936-47. PubMed ID: 22141360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A; Ginalska G
    Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold.
    Kim BS; Kim JS; Lee J
    J Biomed Mater Res A; 2013 Sep; 101(9):2661-6. PubMed ID: 23413086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering.
    Tian L; Prabhakaran MP; Ding X; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of Collagen Barrier Membrane with Enamel Matrix Derivative-Liquid Improves Osteoblast Adhesion and Differentiation.
    Miron RJ; Fujioka-Kobayashi M; Buser D; Zhang Y; Bosshardt DD; Sculean A
    Int J Oral Maxillofac Implants; 2017; 32(1):196-203. PubMed ID: 28095524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold.
    Arahira T; Todo M
    J Mech Behav Biomed Mater; 2014 Nov; 39():218-30. PubMed ID: 25146676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.
    Halling Linder C; Enander K; Magnusson P
    Calcif Tissue Int; 2016 Mar; 98(3):284-93. PubMed ID: 26645431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblast response (initial adhesion and alkaline phosphatase activity) following exposure to a barrier membrane/enamel matrix derivative combination.
    Thangakumaran S; Sudarsan S; Arun KV; Talwar A; James JR
    Indian J Dent Res; 2009; 20(1):7-12. PubMed ID: 19336852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repairing large bone fractures with low frequency electromagnetic fields.
    Lin HY; Lu KH
    J Orthop Res; 2010 Feb; 28(2):265-70. PubMed ID: 19639630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.