BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15386536)

  • 1. In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes.
    Resmi H; Akhunlar H; Temiz Artmann A; Güner G
    Cell Biochem Funct; 2005; 23(3):163-8. PubMed ID: 15386536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological characteristics of erythrocytes incubated in glucose media.
    Shin S; Ku YH; Suh JS; Singh M
    Clin Hemorheol Microcirc; 2008; 38(3):153-61. PubMed ID: 18239257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes.
    Marczak A; Jóźwiak Z
    Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin prevents lipid peroxidation in human erythrocytes but augments deterioration of deformability after in vitro oxidative stress.
    Dikmenoglu N; Ileri E; Seringec N; Ercil D
    Clin Hemorheol Microcirc; 2008; 40(3):235-42. PubMed ID: 19029647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxidative damage of membrane protein thiol groups on erythrocyte membrane viscoelasticities.
    Wang X; Wu Z; Song G; Wang H; Long M; Cai S
    Clin Hemorheol Microcirc; 1999; 21(2):137-46. PubMed ID: 10599597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of isouramil on erythrocyte mechanics: implications for favism.
    Chevion M; Navok T; Pfafferott C; Meiselman HJ; Hochstein P
    Microcirc Endothelium Lymphatics; 1984 Jun; 1(3):295-306. PubMed ID: 6546147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide effects on human erythrocytes structural and functional properties--an in vitro study.
    Mesquita R; Piçarra B; Saldanha C; Martins e Silva J
    Clin Hemorheol Microcirc; 2002; 27(2):137-47. PubMed ID: 12237483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of simvastatin on erythrocyte membrane fluidity during oxidative stress induced by cardiopulmonary bypass: a randomized controlled study.
    Coccia R; Spadaccio C; Foppoli C; Perluigi M; Covino E; Lusini M; Chello M
    Clin Ther; 2007 Aug; 29(8):1706-17. PubMed ID: 17919551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic and stationary rheological study of erythrocytes incubated in a glucose medium.
    Riquelme B; Foresto P; D'Arrigo M; Valverde J; Rasia R
    J Biochem Biophys Methods; 2005 Feb; 62(2):131-41. PubMed ID: 15680283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lanthanum on red blood cell deformability.
    Alexy T; Nemeth N; Wenby RB; Bauersachs RM; Baskurt OK; Meiselman HJ
    Biorheology; 2007; 44(5-6):361-73. PubMed ID: 18401075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Alterations of erythrocyte deformability and membrane protein after high intensity training and recovery in rats].
    Hong P; Li KG; Feng LS
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2002 Aug; 18(3):269-73. PubMed ID: 21180067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of glucose and alpha-tocopherol on low-density lipoprotein oxidation and glycation.
    Chang CJ; Hsieh RH; Wang HF; Chin MY; Huang SY
    Ann N Y Acad Sci; 2005 May; 1042():294-302. PubMed ID: 15965075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired erythrocytes deformability in H(2)O(2)-induced oxidative stress: protective effect of L-carnosine.
    Aydogan S; Yapislar H; Artis S; Aydogan B
    Clin Hemorheol Microcirc; 2008; 39(1-4):93-8. PubMed ID: 18503115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of complement on the rheological properties of the erythrocyte membrane.
    Almará A; Valverde J; Gennaro AM; Luquita A; Rasia R
    Clin Hemorheol Microcirc; 1998 Sep; 19(1):7-16. PubMed ID: 9806727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of caspase-3-like protease in oxidation-induced impairment of erythrocyte membrane properties.
    Suzuki Y; Ohkubo N; Aoto M; Maeda N; Cicha I; Miki T; Mitsuda N
    Biorheology; 2007; 44(3):179-90. PubMed ID: 17851166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes.
    Miller JA; Gravallese E; Bunn HF
    J Clin Invest; 1980 Apr; 65(4):896-901. PubMed ID: 7358849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cells under mechanical stress.
    Kodícek M; Suttnar J; Mircevová L; Marík T
    Gen Physiol Biophys; 1990 Jun; 9(3):291-9. PubMed ID: 2394373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Oxidation of membrane proteins and modification of erythrocyte surface characteristics].
    Kozlova NM; Slobozhanina EI; Chernitskiĭ EA
    Biofizika; 1998; 43(3):480-3. PubMed ID: 9702341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible cross-linking and CO treatment as an approach in red cell stabilization.
    Bakaltcheva I; Leslie S; MacDonald V; Spargo B; Rudolph A
    Cryobiology; 2000 Jun; 40(4):343-59. PubMed ID: 10924266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro study of adrenaline effect on human erythrocyte properties in both gender.
    Hilário S; Saldanha C; Martins e Silva J
    Clin Hemorheol Microcirc; 2003; 28(2):89-98. PubMed ID: 12652014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.