These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 15387258)
1. Multiscale approximation with hierarchical radial basis functions networks. Ferrari S; Maggioni M; Borghese NA IEEE Trans Neural Netw; 2004 Jan; 15(1):178-88. PubMed ID: 15387258 [TBL] [Abstract][Full Text] [Related]
2. A hierarchical RBF online learning algorithm for real-time 3-D scanner. Ferrari S; Bellocchio F; Piuri V; Borghese NA IEEE Trans Neural Netw; 2010 Feb; 21(2):275-85. PubMed ID: 20007028 [TBL] [Abstract][Full Text] [Related]
3. Distortion correction for x-ray image intensifiers: local unwarping polynomials and RBF neural networks. Cerveri P; Forlani C; Borghese NA; Ferrigno G Med Phys; 2002 Aug; 29(8):1759-71. PubMed ID: 12201423 [TBL] [Abstract][Full Text] [Related]
4. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems. Lian J; Lee Y; Sudhoff SD; Zak SH IEEE Trans Neural Netw; 2008 Mar; 19(3):460-74. PubMed ID: 18334365 [TBL] [Abstract][Full Text] [Related]
6. Wavelet basis function neural networks for sequential learning. Jin N; Liu D IEEE Trans Neural Netw; 2008 Mar; 19(3):523-8. PubMed ID: 18334370 [TBL] [Abstract][Full Text] [Related]
7. Robust radial basis function neural networks. Lee CC; Chung PC; Tsai JR; Chang CI IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):674-85. PubMed ID: 18252348 [TBL] [Abstract][Full Text] [Related]
8. All-frequency lighting with multiscale spherical radial basis functions. Lam PM; Ho TY; Leung CS; Wong TT IEEE Trans Vis Comput Graph; 2010; 16(1):43-56. PubMed ID: 19910660 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical approach for multiscale support vector regression. Bellocchio F; Ferrari S; Piuri V; Borghese NA IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1448-60. PubMed ID: 24807928 [TBL] [Abstract][Full Text] [Related]
10. Approximation of nonlinear systems with radial basis function neural networks. Schilling RJ; Carroll JJ; Al-Ajlouni AF IEEE Trans Neural Netw; 2001; 12(1):1-15. PubMed ID: 18244359 [TBL] [Abstract][Full Text] [Related]
11. A growing and pruning method for radial basis function networks. Bortman M; Aladjem M IEEE Trans Neural Netw; 2009 Jun; 20(6):1039-45. PubMed ID: 19447726 [TBL] [Abstract][Full Text] [Related]
12. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Vuković N; Miljković Z Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384 [TBL] [Abstract][Full Text] [Related]
13. Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks. Selver MA; Güzeliş C IEEE Trans Vis Comput Graph; 2009; 15(3):395-409. PubMed ID: 19282547 [TBL] [Abstract][Full Text] [Related]
14. A fast method for implicit surface reconstruction based on radial basis functions network from 3D scattered points. Liu H; Wang X; Qiang W Int J Neural Syst; 2007 Dec; 17(6):459-65. PubMed ID: 18186595 [TBL] [Abstract][Full Text] [Related]
15. Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet transform. Unser M; Sage D; Van De Ville D IEEE Trans Image Process; 2009 Nov; 18(11):2402-18. PubMed ID: 19605325 [TBL] [Abstract][Full Text] [Related]
16. Framelet kernels with applications to support vector regression and regularization networks. Zhang WF; Dai DQ; Yan H IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1128-44. PubMed ID: 19963701 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical radial basis function networks and local polynomial un-warping for X-ray image intensifier distortion correction: a comparison with global techniques. Cerveri P; Forlani C; Pedotti A; Ferrigno G Med Biol Eng Comput; 2003 Mar; 41(2):151-63. PubMed ID: 12691435 [TBL] [Abstract][Full Text] [Related]
18. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Petersen P; Voigtlaender F Neural Netw; 2018 Dec; 108():296-330. PubMed ID: 30245431 [TBL] [Abstract][Full Text] [Related]
19. Upper bound of the expected training error of neural network regression for a Gaussian noise sequence. Hagiwara K; Hayasaka T; Toda N; Usui S; Kuno K Neural Netw; 2001 Dec; 14(10):1419-29. PubMed ID: 11771721 [TBL] [Abstract][Full Text] [Related]