These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 15387417)
1. The influence of bone formation on anchoring percutaneous devices with titanium fibre mesh flanges. Shalabi MM; Walboomers XF; Jansen JA J Mater Sci Mater Med; 2004 Jul; 15(7):809-16. PubMed ID: 15387417 [TBL] [Abstract][Full Text] [Related]
2. Bone formation in calcium-phosphate-coated titanium mesh. Vehof JW; Spauwen PH; Jansen JA Biomaterials; 2000 Oct; 21(19):2003-9. PubMed ID: 10941922 [TBL] [Abstract][Full Text] [Related]
3. Bone formation in CaP-coated and noncoated titanium fiber mesh. Vehof JW; van den Dolder J; de Ruijter JE; Spauwen PH; Jansen JA J Biomed Mater Res A; 2003 Mar; 64(3):417-26. PubMed ID: 12579555 [TBL] [Abstract][Full Text] [Related]
4. Titania and titania-silica coatings for titanium: comparison of ectopic bone formation within cell-seeded scaffolds. Meretoja VV; Tirri T; Aäritalo V; Walboomers XF; Jansen JA; Närhi TO Tissue Eng; 2007 Apr; 13(4):855-63. PubMed ID: 17316131 [TBL] [Abstract][Full Text] [Related]
5. Ectopic bone formation in rats: the importance of the carrier. Hartman EH; Vehof JW; Spauwen PH; Jansen JA Biomaterials; 2005 May; 26(14):1829-35. PubMed ID: 15576157 [TBL] [Abstract][Full Text] [Related]
6. Bone formation by rat bone marrow cells cultured on titanium fiber mesh: effect of in vitro culture time. van den Dolder J; Vehof JW; Spauwen PH; Jansen JA J Biomed Mater Res; 2002 Dec; 62(3):350-8. PubMed ID: 12209920 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation. Hirota M; Hayakawa T; Yoshinari M; Ametani A; Shima T; Monden Y; Ozawa T; Sato M; Koyama C; Tamai N; Iwai T; Tohnai I Int J Oral Maxillofac Surg; 2012 Oct; 41(10):1304-9. PubMed ID: 22513355 [TBL] [Abstract][Full Text] [Related]
8. Ectopic bone formation in titanium mesh loaded with bone morphogenetic protein and coated with calcium phosphate. Vehof JW; Mahmood J; Takita H; van't Hof MA; Kuboki Y; Spauwen PH; Jansen JA Plast Reconstr Surg; 2001 Aug; 108(2):434-43. PubMed ID: 11496187 [TBL] [Abstract][Full Text] [Related]
9. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. van den Dolder J; Farber E; Spauwen PH; Jansen JA Biomaterials; 2003 May; 24(10):1745-50. PubMed ID: 12593956 [TBL] [Abstract][Full Text] [Related]
10. Wound healing phenomena in titanium fibre mesh: the influence of the length of implantation. Paquay YC; de Ruijter JE; van der Waerden JP; Jansen JA Biomaterials; 1997 Jan; 18(2):161-6. PubMed ID: 9022964 [TBL] [Abstract][Full Text] [Related]
11. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype. Holtorf HL; Jansen JA; Mikos AG Biomaterials; 2005 Nov; 26(31):6208-16. PubMed ID: 15921737 [TBL] [Abstract][Full Text] [Related]
12. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material. Walboomers XF; Jansen JA Biomaterials; 2005 Aug; 26(23):4779-85. PubMed ID: 15763257 [TBL] [Abstract][Full Text] [Related]
13. Tissue reaction to Dacron velour and titanium fibre mesh used for anchorage of percutaneous devices. Paquay YC; de Ruijter JE; van der Waerden JP; Jansen JA Biomaterials; 1996 Jun; 17(12):1251-6. PubMed ID: 8799510 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the tissue reaction to a percutaneous access device using titanium fibre mesh anchorage in goats. Gerritsen M; Paquay YG; Jansen JA J Mater Sci Mater Med; 1998 Sep; 9(9):523-8. PubMed ID: 15348850 [TBL] [Abstract][Full Text] [Related]
15. Titanium fiber mesh anchorage for percutaneous devices applicable for peritoneal dialysis. Paquay YC; de Ruijter JE; van der Waerden JP; Jansen JA J Biomed Mater Res; 1994 Nov; 28(11):1321-8. PubMed ID: 7829562 [TBL] [Abstract][Full Text] [Related]
16. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Lopez-Heredia MA; Sohier J; Gaillard C; Quillard S; Dorget M; Layrolle P Biomaterials; 2008 Jun; 29(17):2608-15. PubMed ID: 18358527 [TBL] [Abstract][Full Text] [Related]
17. Influence of RGD-loaded titanium implants on bone formation in vivo. Kroese-Deutman HC; van den Dolder J; Spauwen PH; Jansen JA Tissue Eng; 2005; 11(11-12):1867-75. PubMed ID: 16411833 [TBL] [Abstract][Full Text] [Related]
18. The influence of impaired wound healing on the tissue reaction to percutaneous devices using titanium fiber mesh anchorage. Gerritsen M; Lutterman JA; Jansen JA J Biomed Mater Res; 2000 Oct; 52(1):135-41. PubMed ID: 10906684 [TBL] [Abstract][Full Text] [Related]
19. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025 [TBL] [Abstract][Full Text] [Related]
20. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. La WG; Park S; Yoon HH; Jeong GJ; Lee TJ; Bhang SH; Han JY; Char K; Kim BS Small; 2013 Dec; 9(23):4051-60. PubMed ID: 23839958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]