These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 15387616)
21. New fluorogenic dansyl-containing calix[4]arene in the partial cone conformation for highly sensitive and selective recognition of lead(II). Buie NM; Talanov VS; Butcher RJ; Talanova GG Inorg Chem; 2008 May; 47(9):3549-58. PubMed ID: 18345614 [TBL] [Abstract][Full Text] [Related]
22. Calix[6]tris(thio)ureas: heteroditopic receptors for the cooperative binding of organic ion pairs. Hamon M; Ménand M; Le Gac S; Luhmer M; Dalla V; Jabin I J Org Chem; 2008 Sep; 73(18):7067-71. PubMed ID: 18712925 [TBL] [Abstract][Full Text] [Related]
23. An allosteric heteroditopic receptor for neutral guests and contact ion pairs with a remarkable selectivity for ammonium fluoride salts. Lascaux A; Le Gac S; Wouters J; Luhmer M; Jabin I Org Biomol Chem; 2010 Oct; 8(20):4607-16. PubMed ID: 20725656 [TBL] [Abstract][Full Text] [Related]
24. Chiral mono and diamide derivatives of calix[4]arene for enantiomeric recognition of chiral amines. Kocabas E; Durmaz M; Alpaydin S; Sirit A; Yilmaz M Chirality; 2008 Jan; 20(1):26-34. PubMed ID: 17924427 [TBL] [Abstract][Full Text] [Related]
25. Ratiometric sensing of Hg2+ based on the calix[4]arene of partial cone conformation possessing a dansyl moiety. Dhir A; Bhalla V; Kumar M Org Lett; 2008 Nov; 10(21):4891-4. PubMed ID: 18831557 [TBL] [Abstract][Full Text] [Related]
26. Tetra-TTF calix[4]pyrrole: a rationally designed receptor for electron-deficient neutral guests. Nielsen KA; Cho WS; Jeppesen JO; Lynch VM; Becher J; Sessler JL J Am Chem Soc; 2004 Dec; 126(50):16296-7. PubMed ID: 15600311 [TBL] [Abstract][Full Text] [Related]
27. Proparacaine complexation with beta-cyclodextrin and p-sulfonic acid calix[6]arene, as evaluated by varied (1)H-NMR approaches. Arantes LM; Scarelli C; Marsaioli AJ; de Paula E; Fernandes SA Magn Reson Chem; 2009 Sep; 47(9):757-63. PubMed ID: 19557725 [TBL] [Abstract][Full Text] [Related]
28. Design of a novel inherently chiral calix[4]arene for chiral molecular recognition. Shirakawa S; Moriyama A; Shimizu S Org Lett; 2007 Aug; 9(16):3117-9. PubMed ID: 17616144 [TBL] [Abstract][Full Text] [Related]
29. Solvent control on the selective, nonselective, and absent response of a partially substituted lower rim calix(4)arene derivative for soft metal cations (mercury(II) and silver(I)). Structural and thermodynamic studies. Danil de Namor AF; Chahine S; Castellano EE; Piro OE J Phys Chem A; 2005 Aug; 109(30):6743-51. PubMed ID: 16834028 [TBL] [Abstract][Full Text] [Related]
30. Insights into the binding properties of a cuprous ion embedded in the tren cap of a calix[6]arene and supramolecular trapping of an intermediate. Izzet G; Rager MN; Reinaud O Dalton Trans; 2007 Feb; (7):771-80. PubMed ID: 17279248 [TBL] [Abstract][Full Text] [Related]
31. Selective 1,3-complexation of p-(t)Bu-calix[4]arene by [TiCp(2)Me(2)]. Petrella AJ; Roberts NK; Craig DC; Raston CL; Lamb RN Chem Commun (Camb); 2004 Jan; (1):64-5. PubMed ID: 14737334 [TBL] [Abstract][Full Text] [Related]
32. Efficient syntheses and resolutions of inherently chiral calix[4]quinolines in the cone and partial-cone conformation. Miao R; Zheng QY; Chen CF; Huang ZT J Org Chem; 2005 Sep; 70(19):7662-71. PubMed ID: 16149797 [TBL] [Abstract][Full Text] [Related]
33. Synthesis, structure, and reactions of NH-bridged calix[m]arene[n]pyridines. Yao B; Wang DX; Gong HY; Huang ZT; Wang MX J Org Chem; 2009 Aug; 74(15):5361-8. PubMed ID: 19496575 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions. Shirakawa S; Kimura T; Murata S; Shimizu S J Org Chem; 2009 Feb; 74(3):1288-96. PubMed ID: 19099418 [TBL] [Abstract][Full Text] [Related]
35. Cation/anion recognition by a partially substituted lower rim calix[4]arene hydroxyamide, a ditopic receptor. Danil de Namor AF; Chaaban JK; Abbas I J Phys Chem A; 2006 Aug; 110(31):9575-84. PubMed ID: 16884190 [TBL] [Abstract][Full Text] [Related]
36. Calix[6]arene derivatives selectively functionalized at alternate sites on the smaller rim with 2-phenylpyridine and 2-fluorenylpyridine substituents to provide deep cavities. Zeng X; Batsanov AS; Bryce MR J Org Chem; 2006 Dec; 71(26):9589-94. PubMed ID: 17168574 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of mono-, di- and tetra-alkyne functionalized calix[4]arenes: reactions of these multipodal ligands with dicobalt octacarbonyl to give complexes which contain up to eight cobalt atoms. Chetcuti MJ; Devoille AM; Othman AB; Souane R; Thuéry P; Vicens J Dalton Trans; 2009 Apr; (16):2999-3008. PubMed ID: 19352528 [TBL] [Abstract][Full Text] [Related]
38. Molecular recognition thermodynamics of pyridine derivatives by sulfonatocalixarenes at different pH values. Liu Y; Ma YH; Chen Y; Guo DS; Li Q J Org Chem; 2006 Aug; 71(17):6468-73. PubMed ID: 16901132 [TBL] [Abstract][Full Text] [Related]
39. Synthesis, X-ray structures and reactivity of calix[5]arene bismuth(iii) and antimony(III) complexes. Mendoza-Espinosa D; Hanna TA Dalton Trans; 2009 Jul; (26):5211-25. PubMed ID: 19562183 [TBL] [Abstract][Full Text] [Related]
40. Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling. Arena G; Casnati A; Contino A; Magrì A; Sansone F; Sciotto D; Ungaro R Org Biomol Chem; 2006 Jan; 4(2):243-9. PubMed ID: 16391766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]