These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 15387822)
1. Regulatory networks affected by iron availability in Candida albicans. Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822 [TBL] [Abstract][Full Text] [Related]
2. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Pelletier B; Mercier A; Durand M; Peter C; Jbel M; Beaudoin J; Labbé S Yeast; 2007 Oct; 24(10):883-900. PubMed ID: 17724773 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans. Lee RE; Liu TT; Barker KS; Lee RE; Rogers PD J Antimicrob Chemother; 2005 May; 55(5):655-62. PubMed ID: 15814599 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Bensen ES; Martin SJ; Li M; Berman J; Davis DA Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. Thewes S; Moran GP; Magee BB; Schaller M; Sullivan DJ; Hube B BMC Microbiol; 2008 Oct; 8():187. PubMed ID: 18950481 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis. Zeng YB; Qian YS; Ma L; Gu HN Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123 [TBL] [Abstract][Full Text] [Related]
7. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671 [TBL] [Abstract][Full Text] [Related]
8. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Kabir MA; Hussain MA Expert Rev Anti Infect Ther; 2009 Feb; 7(1):121-34. PubMed ID: 19622061 [TBL] [Abstract][Full Text] [Related]
9. Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1. Heyken WT; Wagner C; Wittmann J; Albrecht A; Schüller HJ Yeast; 2003 Oct; 20(14):1177-88. PubMed ID: 14587102 [TBL] [Abstract][Full Text] [Related]
10. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Uppuluri P; Chaffin WL Mol Microbiol; 2007 Jun; 64(6):1572-86. PubMed ID: 17555439 [TBL] [Abstract][Full Text] [Related]
11. A family of secreted pathogenesis-related proteins in Candida albicans. Röhm M; Lindemann E; Hiller E; Ermert D; Lemuth K; Trkulja D; Sogukpinar O; Brunner H; Rupp S; Urban CF; Sohn K Mol Microbiol; 2013 Jan; 87(1):132-51. PubMed ID: 23136884 [TBL] [Abstract][Full Text] [Related]
12. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant. Bai C; Chan FY; Wang Y Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072 [TBL] [Abstract][Full Text] [Related]
13. Global transcriptional profiling of Candida albicans cwt1 null mutant. Moreno I; Castillo L; Sentandreu R; Valentin E Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235 [TBL] [Abstract][Full Text] [Related]
14. CRZ1, a target of the calcineurin pathway in Candida albicans. Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987 [TBL] [Abstract][Full Text] [Related]
15. Genomic response programs of Candida albicans following protoplasting and regeneration. Castillo L; Martínez AI; Garcerá A; García-Martínez J; Ruiz-Herrera J; Valentín E; Sentandreu R Fungal Genet Biol; 2006 Feb; 43(2):124-34. PubMed ID: 16455273 [TBL] [Abstract][Full Text] [Related]
16. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction. Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234 [TBL] [Abstract][Full Text] [Related]
17. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Weissman Z; Kornitzer D Mol Microbiol; 2004 Aug; 53(4):1209-20. PubMed ID: 15306022 [TBL] [Abstract][Full Text] [Related]
18. Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin. Santos R; Buisson N; Knight SA; Dancis A; Camadro JM; Lesuisse E Mol Microbiol; 2004 Oct; 54(2):507-19. PubMed ID: 15469520 [TBL] [Abstract][Full Text] [Related]
19. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
20. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Lesuisse E; Knight SA; Camadro JM; Dancis A Yeast; 2002 Mar; 19(4):329-40. PubMed ID: 11870856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]