These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 15387822)
21. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431 [TBL] [Abstract][Full Text] [Related]
22. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Hube B Curr Opin Microbiol; 2004 Aug; 7(4):336-41. PubMed ID: 15288621 [TBL] [Abstract][Full Text] [Related]
23. Homology, disruption and phenotypic analysis of CaGS Candida albicans gene induced during macrophage infection. Luongo M; Porta A; Maresca B FEMS Immunol Med Microbiol; 2005 Sep; 45(3):471-8. PubMed ID: 16084700 [TBL] [Abstract][Full Text] [Related]
24. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Haas H Appl Microbiol Biotechnol; 2003 Sep; 62(4):316-30. PubMed ID: 12759789 [TBL] [Abstract][Full Text] [Related]
25. Candida albicans HSP12 is co-regulated by physiological CO2 and pH. Sheth CC; Mogensen EG; Fu MS; Blomfield IC; Mühlschlegel FA Fungal Genet Biol; 2008 Jul; 45(7):1075-80. PubMed ID: 18487064 [TBL] [Abstract][Full Text] [Related]
26. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Lotz H; Sohn K; Brunner H; Muhlschlegel FA; Rupp S Eukaryot Cell; 2004 Jun; 3(3):776-84. PubMed ID: 15189998 [TBL] [Abstract][Full Text] [Related]
27. Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Staib P; Morschhäuser J Mol Microbiol; 2005 Jan; 55(2):637-52. PubMed ID: 15659176 [TBL] [Abstract][Full Text] [Related]
28. Tcc1p, a novel protein containing the tetratricopeptide repeat motif, interacts with Tup1p to regulate morphological transition and virulence in Candida albicans. Kaneko A; Umeyama T; Utena-Abe Y; Yamagoe S; Niimi M; Uehara Y Eukaryot Cell; 2006 Nov; 5(11):1894-905. PubMed ID: 16998076 [TBL] [Abstract][Full Text] [Related]
29. Identifying infection-associated genes of Candida albicans in the postgenomic era. Wilson D; Thewes S; Zakikhany K; Fradin C; Albrecht A; Almeida R; Brunke S; Grosse K; Martin R; Mayer F; Leonhardt I; Schild L; Seider K; Skibbe M; Slesiona S; Waechtler B; Jacobsen I; Hube B FEMS Yeast Res; 2009 Aug; 9(5):688-700. PubMed ID: 19473261 [TBL] [Abstract][Full Text] [Related]
30. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Kumamoto CA; Vinces MD Cell Microbiol; 2005 Nov; 7(11):1546-54. PubMed ID: 16207242 [TBL] [Abstract][Full Text] [Related]
33. Candida albicans iron acquisition within the host. Almeida RS; Wilson D; Hube B FEMS Yeast Res; 2009 Oct; 9(7):1000-12. PubMed ID: 19788558 [TBL] [Abstract][Full Text] [Related]
34. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
35. Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor. Sexton JA; Brown V; Johnston M Yeast; 2007 Oct; 24(10):847-60. PubMed ID: 17605131 [TBL] [Abstract][Full Text] [Related]
36. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Hsu PC; Yang CY; Lan CY Eukaryot Cell; 2011 Feb; 10(2):207-25. PubMed ID: 21131439 [TBL] [Abstract][Full Text] [Related]
37. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332 [TBL] [Abstract][Full Text] [Related]
38. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091 [TBL] [Abstract][Full Text] [Related]
39. The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans. Bennett RJ; Johnson AD Mol Microbiol; 2006 Oct; 62(1):100-19. PubMed ID: 16987174 [TBL] [Abstract][Full Text] [Related]
40. A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Tsao CC; Chen YT; Lan CY Fungal Genet Biol; 2009 Feb; 46(2):126-36. PubMed ID: 19095072 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]