These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1145 related articles for article (PubMed ID: 1538787)

  • 1. Assessment of protein models with three-dimensional profiles.
    Lüthy R; Bowie JU; Eisenberg D
    Nature; 1992 Mar; 356(6364):83-5. PubMed ID: 1538787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional profiles for analysing protein sequence-structure relationships.
    Eisenberg D; Bowie JU; Lüthy R; Choe S
    Faraday Discuss; 1992; (93):25-34. PubMed ID: 1290936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions.
    Zhou GP; Troy FA
    Glycobiology; 2003 Feb; 13(2):51-71. PubMed ID: 12626407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refinement of 3D models of horseradish peroxidase isoenzyme C: predictions of 2D NMR assignments and substrate binding sites.
    Zhao D; Gilfoyle DJ; Smith AT; Loew GH
    Proteins; 1996 Oct; 26(2):204-16. PubMed ID: 8916228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the three-dimensional fold of a protein from approximate constraints: a simulation study.
    Soman KV; Braun W
    Cell Biochem Biophys; 2001; 34(3):283-304. PubMed ID: 11898858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional profile method using residue preference as a continuous function of residue environment.
    Zhang KY; Eisenberg D
    Protein Sci; 1994 Apr; 3(4):687-95. PubMed ID: 8003986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing protein structures with a non-local atomic interaction energy.
    Melo F; Feytmans E
    J Mol Biol; 1998 Apr; 277(5):1141-52. PubMed ID: 9571028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structures of proteins in solution by nuclear magnetic resonance spectroscopy.
    Gronenborn AM; Clore GM
    Protein Seq Data Anal; 1989; 2(1):1-8. PubMed ID: 2911557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure prediction by threading methods: evaluation of current techniques.
    Lemer CM; Rooman MJ; Wodak SJ
    Proteins; 1995 Nov; 23(3):337-55. PubMed ID: 8710827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional profiles: a new tool to identify protein surface similarities.
    de Rinaldis M; Ausiello G; Cesareni G; Helmer-Citterich M
    J Mol Biol; 1998 Dec; 284(4):1211-21. PubMed ID: 9837739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing model accuracy using the homology modeling automatically software.
    Bhattacharya A; Wunderlich Z; Monleon D; Tejero R; Montelione GT
    Proteins; 2008 Jan; 70(1):105-18. PubMed ID: 17640066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact area difference (CAD): a robust measure to evaluate accuracy of protein models.
    Abagyan RA; Totrov MM
    J Mol Biol; 1997 May; 268(3):678-85. PubMed ID: 9171291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating protein structures determined by structural genomics consortia.
    Bhattacharya A; Tejero R; Montelione GT
    Proteins; 2007 Mar; 66(4):778-95. PubMed ID: 17186527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints.
    Loquet A; Bardiaux B; Gardiennet C; Blanchet C; Baldus M; Nilges M; Malliavin T; Böckmann A
    J Am Chem Soc; 2008 Mar; 130(11):3579-89. PubMed ID: 18284240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the helix packing of globular proteins by self-correcting distance geometry.
    Mumenthaler C; Braun W
    Protein Sci; 1995 May; 4(5):863-71. PubMed ID: 7663342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of remotely related structural homologues using sequence profiles of aligned homologous protein structures.
    Namboori S; Srinivasan N; Pandit SB
    In Silico Biol; 2004; 4(4):445-60. PubMed ID: 15506994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated method for modeling proteins on known templates using distance geometry.
    Srinivasan S; March CJ; Sudarsanam S
    Protein Sci; 1993 Feb; 2(2):277-89. PubMed ID: 8443604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.