BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 15388134)

  • 21. A software tool for 2D/3D visualization and analysis of phase-space data generated by Monte Carlo modelling of medical linear accelerators.
    Neicu T; Aljarrah KM; Jiang SB
    Phys Med Biol; 2005 Oct; 50(20):N257-67. PubMed ID: 16204867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On measuring the output of an IORT mobile dedicated accelerator.
    De Angelis C; Soriani A; Benassi M; Onori S
    Radiat Prot Dosimetry; 2006; 120(1-4):221-5. PubMed ID: 16644963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Analysis and comparison of various quality protocols for radiotherapy linear accelerators].
    Ceruti M; D'Ercole L; Lisciandro F; Nicelli L; Rovera G
    Radiol Med; 1997 Mar; 93(3):273-7. PubMed ID: 9221422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Hyperfractionation--a new challenge for medical electron linear accelerators?].
    Jensen JM; Ihnen E; Glaser T; Hillenberg HJ; Kohr P; Thoms M
    Strahlenther Onkol; 1990 Jun; 166(6):415-9. PubMed ID: 2363104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Intraoperative radiotherapy with electrons: construction of facilities and dosimetry].
    Fellin G; Valentini A
    Radiol Med; 1990 Oct; 80(4 Suppl 1):109-13. PubMed ID: 2251396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a transmission ionization beam-imager for radiotherapy verification.
    Thomas MD; Symonds-Tayler JR
    Phys Med Biol; 2003 Aug; 48(16):2633-44. PubMed ID: 12974579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The characterization of unflattened photon beams from a 6 MV linear accelerator.
    Cashmore J
    Phys Med Biol; 2008 Apr; 53(7):1933-46. PubMed ID: 18364548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams.
    Mrčela I; Bokulić T; Izewska J; Budanec M; Fröbe A; Kusić Z
    Phys Med Biol; 2011 Sep; 56(18):6065-82. PubMed ID: 21873767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A protocol for the determination of absorbed dose from high-energy photon and electron beams.
    Med Phys; 1983; 10(6):741-71. PubMed ID: 6419029
    [No Abstract]   [Full Text] [Related]  

  • 30. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials.
    Price RA
    Radiat Prot Dosimetry; 2005; 115(1-4):386-90. PubMed ID: 16381751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecliptic method for the determination of backscatter into the beam monitor chambers in photon beams of medical accelerators.
    Sanz DE; Alvarez GD; Nelli FE
    Phys Med Biol; 2007 Mar; 52(6):1647-58. PubMed ID: 17327654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dosimetry of normally and obliquely incident cobalt-60 teletherapy beams.
    Sabuwala HA
    Strahlentherapie; 1979 Nov; 155(11):766-9. PubMed ID: 516098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the NMIJ and the ARPANSA standards for absorbed dose to water in high-energy photon beams.
    Shimizu M; Morishita Y; Kato M; Tanaka T; Kurosawa T; Takata N; Saito N; Ramanathan G; Harty PD; Oliver C; Wright T; Butler DJ
    Radiat Prot Dosimetry; 2015 Apr; 164(3):181-6. PubMed ID: 25209996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of properties of the TIARA neutron beam facility of importance for calibration applications.
    Shikaze Y; Tanimura Y; Saegusa J; Tsutsumi M; Yamaguchi Y; Uchita Y
    Radiat Prot Dosimetry; 2007; 126(1-4):163-7. PubMed ID: 17519243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of an efficient source design for Cobalt-60-based tomotherapy using EGSnrc Monte Carlo simulations.
    Joshi CP; Darko J; Vidyasagar PB; Schreiner LJ
    Phys Med Biol; 2008 Feb; 53(3):575-92. PubMed ID: 18199903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MCNP simulation of a Theratron 780 radiotherapy unit.
    Miró R; Soler J; Gallardo S; Campayo JM; Díez S; Verdú G
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):65-8. PubMed ID: 16604598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of flatness and symmetry of megavoltage x-ray beam with an electronic portal imaging device (EPID).
    Liu G; van Doorn T; Bezak E
    Australas Phys Eng Sci Med; 2002 Jul; 25(2):58-66. PubMed ID: 12219846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the Therac 6 linear accelerator for radiation therapy.
    Grant W; Ames J; Almond PR
    Med Phys; 1978; 5(5):448-9. PubMed ID: 101762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectrally average conversion coefficients for air kerma to ambient dose equivalent for clinical linear accelerator.
    Frota MA; Crispim VR; Silva AX; Kelecom A
    Appl Radiat Isot; 2009 Jan; 67(1):174-7. PubMed ID: 18835722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A beam-matching concept for medical linear accelerators.
    Sjöström D; Bjelkengren U; Ottosson W; Behrens CF
    Acta Oncol; 2009; 48(2):192-200. PubMed ID: 18752079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.