BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15388309)

  • 1. Mechanisms of uniformity of yield strains for trabecular bone.
    Bayraktar HH; Keaveny TM
    J Biomech; 2004 Nov; 37(11):1671-8. PubMed ID: 15388309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.
    Niebur GL; Yuen JC; Burghardt AJ; Keaveny TM
    J Biomech; 2001 May; 34(5):699-706. PubMed ID: 11311712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.
    Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM
    Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of yield strain of human trabecular bone on anatomic site.
    Morgan EF; Keaveny TM
    J Biomech; 2001 May; 34(5):569-77. PubMed ID: 11311697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone.
    Niebur GL; Feldstein MJ; Yuen JC; Chen TJ; Keaveny TM
    J Biomech; 2000 Dec; 33(12):1575-83. PubMed ID: 11006381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear strength behavior of human trabecular bone.
    Sanyal A; Gupta A; Bayraktar HH; Kwon RY; Keaveny TM
    J Biomech; 2012 Oct; 45(15):2513-9. PubMed ID: 22884967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.
    Sanyal A; Scheffelin J; Keaveny TM
    J Biomech Eng; 2015 Jan; 137(1):0110091-01100910. PubMed ID: 25401413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.
    Liu XS; Bevill G; Keaveny TM; Sajda P; Guo XE
    J Biomech; 2009 Feb; 42(3):249-56. PubMed ID: 19101672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone.
    Liu XS; Sajda P; Saha PK; Wehrli FW; Guo XE
    J Bone Miner Res; 2006 Oct; 21(10):1608-17. PubMed ID: 16995816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction.
    Sabet FA; Jin O; Koric S; Jasiuk I
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2941. PubMed ID: 29168345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence behavior of high-resolution finite element models of trabecular bone.
    Niebur GL; Yuen JC; Hsia AC; Keaveny TM
    J Biomech Eng; 1999 Dec; 121(6):629-35. PubMed ID: 10633264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.