These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 15388347)
1. pKa of the essential Glu54 and backbone conformation for subunit c from the H+-coupled F1F0 ATP synthase from an alkaliphilic Bacillus. Rivera-Torres IO; Krueger-Koplin RD; Hicks DB; Cahill SM; Krulwich TA; Girvin ME FEBS Lett; 2004 Sep; 575(1-3):131-5. PubMed ID: 15388347 [TBL] [Abstract][Full Text] [Related]
2. A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. Nakano T; Ikegami T; Suzuki T; Yoshida M; Akutsu H J Mol Biol; 2006 Apr; 358(1):132-44. PubMed ID: 16497328 [TBL] [Abstract][Full Text] [Related]
3. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Meier T; Morgner N; Matthies D; Pogoryelov D; Keis S; Cook GM; Dimroth P; Brutschy B Mol Microbiol; 2007 Sep; 65(5):1181-92. PubMed ID: 17645441 [TBL] [Abstract][Full Text] [Related]
4. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. McMillan DG; Keis S; Dimroth P; Cook GM J Biol Chem; 2007 Jun; 282(24):17395-404. PubMed ID: 17434874 [TBL] [Abstract][Full Text] [Related]
5. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Stocker A; Keis S; Vonck J; Cook GM; Dimroth P Structure; 2007 Aug; 15(8):904-14. PubMed ID: 17697996 [TBL] [Abstract][Full Text] [Related]
6. The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile-specific residue Lys-180 and other residues that support alkaliphile oxidative phosphorylation. Fujisawa M; Fackelmayer OJ; Liu J; Krulwich TA; Hicks DB J Biol Chem; 2010 Oct; 285(42):32105-15. PubMed ID: 20716528 [TBL] [Abstract][Full Text] [Related]
7. Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Liu X; Gong X; Hicks DB; Krulwich TA; Yu L; Yu CA Biochemistry; 2007 Jan; 46(1):306-13. PubMed ID: 17198401 [TBL] [Abstract][Full Text] [Related]
8. The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. Matthies D; Preiss L; Klyszejko AL; Muller DJ; Cook GM; Vonck J; Meier T J Mol Biol; 2009 May; 388(3):611-8. PubMed ID: 19327366 [TBL] [Abstract][Full Text] [Related]
9. Role of gamma-subunit N- and C-termini in assembly of the mitochondrial ATP synthase in yeast. Dian EA; Papatheodorou P; Emmrich K; Randel O; Geissler A; Kölling R; Rassow J; Motz C J Mol Biol; 2008 Apr; 377(5):1314-23. PubMed ID: 18328502 [TBL] [Abstract][Full Text] [Related]
10. Making the right moves. Bianchet MA; Amzel LM Structure; 2007 Aug; 15(8):885-6. PubMed ID: 17697991 [TBL] [Abstract][Full Text] [Related]
11. Structure of the nucleotide-binding subunit B of the energy producer A1A0 ATP synthase in complex with adenosine diphosphate. Kumar A; Manimekalai MS; Grüber G Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1110-5. PubMed ID: 19020348 [TBL] [Abstract][Full Text] [Related]
12. Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus. Pogoryelov D; Nikolaev Y; Schlattner U; Pervushin K; Dimroth P; Meier T FEBS J; 2008 Oct; 275(19):4850-62. PubMed ID: 18721138 [TBL] [Abstract][Full Text] [Related]
13. Two distinct proton binding sites in the ATP synthase family. von Ballmoos C; Dimroth P Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472 [TBL] [Abstract][Full Text] [Related]
14. Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel. Mitome N; Ono S; Sato H; Suzuki T; Sone N; Yoshida M Biochem J; 2010 Aug; 430(1):171-7. PubMed ID: 20518749 [TBL] [Abstract][Full Text] [Related]
15. Surface proton donors for the D-pathway of cytochrome c oxidase in the absence of subunit III. Adelroth P; Hosler J Biochemistry; 2006 Jul; 45(27):8308-18. PubMed ID: 16819830 [TBL] [Abstract][Full Text] [Related]
16. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase. Betz M; Löhr F; Wienk H; Rüterjans H Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456 [TBL] [Abstract][Full Text] [Related]
17. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae. Bueler SA; Rubinstein JL Biochemistry; 2008 Nov; 47(45):11804-10. PubMed ID: 18937496 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Functionally Critical AXAXAXA and PXXEXXP Motifs of the ATP Synthase c-Subunit from an Alkaliphilic Bacillus. Liu J; Fujisawa M; Hicks DB; Krulwich TA J Biol Chem; 2009 Mar; 284(13):8714-25. PubMed ID: 19176524 [TBL] [Abstract][Full Text] [Related]
19. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Meier T; Polzer P; Diederichs K; Welte W; Dimroth P Science; 2005 Apr; 308(5722):659-62. PubMed ID: 15860619 [TBL] [Abstract][Full Text] [Related]
20. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis. He F; Samra HS; Johnson EA; Degner NR; McCarty RE; Richter ML Biochemistry; 2008 Jan; 47(2):836-44. PubMed ID: 18092810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]