These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 15388419)
1. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Novotny GW; Jakobsen L; Andersen NM; Poehlsgaard J; Douthwaite S Antimicrob Agents Chemother; 2004 Oct; 48(10):3677-83. PubMed ID: 15388419 [TBL] [Abstract][Full Text] [Related]
2. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Xiong L; Shah S; Mauvais P; Mankin AS Mol Microbiol; 1999 Jan; 31(2):633-9. PubMed ID: 10027979 [TBL] [Abstract][Full Text] [Related]
3. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Douthwaite S; Hansen LH; Mauvais P Mol Microbiol; 2000 Apr; 36(1):183-93. PubMed ID: 10760175 [TBL] [Abstract][Full Text] [Related]
4. Binding site of the bridged macrolides in the Escherichia coli ribosome. Xiong L; Korkhin Y; Mankin AS Antimicrob Agents Chemother; 2005 Jan; 49(1):281-8. PubMed ID: 15616307 [TBL] [Abstract][Full Text] [Related]
5. 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A-->G. Pfister P; Corti N; Hobbie S; Bruell C; Zarivach R; Yonath A; Böttger EC Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5180-5. PubMed ID: 15795375 [TBL] [Abstract][Full Text] [Related]
6. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. Garza-Ramos G; Xiong L; Zhong P; Mankin A J Bacteriol; 2001 Dec; 183(23):6898-907. PubMed ID: 11698379 [TBL] [Abstract][Full Text] [Related]
7. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Hansen LH; Mauvais P; Douthwaite S Mol Microbiol; 1999 Jan; 31(2):623-31. PubMed ID: 10027978 [TBL] [Abstract][Full Text] [Related]
8. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Liu M; Douthwaite S Antimicrob Agents Chemother; 2002 Jun; 46(6):1629-33. PubMed ID: 12019067 [TBL] [Abstract][Full Text] [Related]
9. Mycoplasma bovis isolates from dairy calves in Japan have less susceptibility than a reference strain to all approved macrolides associated with a point mutation (G748A) combined with multiple species-specific nucleotide alterations in 23S rRNA. Sato T; Higuchi H; Yokota SI; Tamura Y Microbiol Immunol; 2017 Jun; 61(6):215-224. PubMed ID: 28504455 [TBL] [Abstract][Full Text] [Related]
10. Functional interactions within 23S rRNA involving the peptidyltransferase center. Douthwaite S J Bacteriol; 1992 Feb; 174(4):1333-8. PubMed ID: 1531223 [TBL] [Abstract][Full Text] [Related]
11. Insights into the mode of action of novel fluoroketolides, potent inhibitors of bacterial protein synthesis. Krokidis MG; Márquez V; Wilson DN; Kalpaxis DL; Dinos GP Antimicrob Agents Chemother; 2014; 58(1):472-80. PubMed ID: 24189263 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. Cagliero C; Mouline C; Payot S; Cloeckaert A J Antimicrob Chemother; 2005 Nov; 56(5):948-50. PubMed ID: 16157618 [TBL] [Abstract][Full Text] [Related]
13. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Shoji T; Takaya A; Sato Y; Kimura S; Suzuki T; Yamamoto T Nucleic Acids Res; 2015 Oct; 43(18):8964-72. PubMed ID: 26365244 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. Poulsen SM; Kofoed C; Vester B J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288 [TBL] [Abstract][Full Text] [Related]
16. Induction of macrolide resistance in Mycoplasma gallisepticum in vitro and its resistance-related mutations within domain V of 23S rRNA. Wu CM; Wu H; Ning Y; Wang J; Du X; Shen J FEMS Microbiol Lett; 2005 Jun; 247(2):199-205. PubMed ID: 15936901 [TBL] [Abstract][Full Text] [Related]
17. The tylosin-resistance methyltransferase RlmA(II) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748. Douthwaite S; Crain PF; Liu M; Poehlsgaard J J Mol Biol; 2004 Apr; 337(5):1073-7. PubMed ID: 15046978 [TBL] [Abstract][Full Text] [Related]
18. Streptococcus pyogenes isolates with high-level macrolide resistance and reduced susceptibility to telithromycin associated with 23S rRNA mutations. Farrell DJ; Shackcloth J; Barbadora KA; Green MD Antimicrob Agents Chemother; 2006 Feb; 50(2):817-8. PubMed ID: 16436755 [TBL] [Abstract][Full Text] [Related]
19. Methylation of 23S rRNA nucleotide G748 by RlmAII methyltransferase renders Streptococcus pneumoniae telithromycin susceptible. Takaya A; Sato Y; Shoji T; Yamamoto T Antimicrob Agents Chemother; 2013 Aug; 57(8):3789-96. PubMed ID: 23716046 [TBL] [Abstract][Full Text] [Related]
20. Pneumococcal resistance to macrolides, lincosamides, ketolides, and streptogramin B agents: molecular mechanisms and resistance phenotypes. Edelstein PH Clin Infect Dis; 2004 May; 38 Suppl 4():S322-7. PubMed ID: 15127365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]