These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15388765)

  • 41. Episodic chromosomal evolution in Planipapillus (Onychophora: Peripatopsidae): a phylogenetic approach to evolutionary dynamics and speciation.
    Rockman MV; Rowell DM
    Evolution; 2002 Jan; 56(1):58-69. PubMed ID: 11913667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty.
    Longo MS; Carone DM; ; Green ED; O'Neill MJ; O'Neill RJ
    BMC Genomics; 2009 Jul; 10():334. PubMed ID: 19630942
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heterochromatin tells CENP-A where to go.
    Durand-Dubief M; Ekwall K
    Bioessays; 2008 Jun; 30(6):526-9. PubMed ID: 18478529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromosomal rearrangements and genetic structure at different evolutionary levels of the Sorex araneus group.
    Basset P; Yannic G; Hausser J
    J Evol Biol; 2008 May; 21(3):842-52. PubMed ID: 18266682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes).
    Kehrer-Sawatzki H; Sandig C; Chuzhanova N; Goidts V; Szamalek JM; Tänzer S; Müller S; Platzer M; Cooper DN; Hameister H
    Hum Mutat; 2005 Jan; 25(1):45-55. PubMed ID: 15580561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres.
    Stanyon R; Rocchi M; Capozzi O; Roberto R; Misceo D; Ventura M; Cardone MF; Bigoni F; Archidiacono N
    Chromosome Res; 2008; 16(1):17-39. PubMed ID: 18293103
    [TBL] [Abstract][Full Text] [Related]  

  • 48. B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive.
    Palestis BG; Burt A; Jones RN; Trivers R
    Proc Biol Sci; 2004 Feb; 271 Suppl 3(Suppl 3):S22-4. PubMed ID: 15101408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis.
    Huang L; Wang J; Nie W; Su W; Yang F
    Chromosome Res; 2006; 14(6):637-47. PubMed ID: 16964570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interpretation of karyotype evolution should consider chromosome structural constraints.
    Schubert I; Lysak MA
    Trends Genet; 2011 Jun; 27(6):207-16. PubMed ID: 21592609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative gene mapping in Arabidopsis lyrata chromosomes 6 and 7 and A. thaliana chromosome IV: evolutionary history, rearrangements and local recombination rates.
    Kawabe A; Hansson B; Forrest A; Hagenblad J; Charlesworth D
    Genet Res; 2006 Aug; 88(1):45-56. PubMed ID: 17014743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function.
    Balzano E; Giunta S
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32784998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location.
    Hansson B; Kawabe A; Preuss S; Kuittinen H; Charlesworth D
    Genet Res; 2006 Apr; 87(2):75-85. PubMed ID: 16709272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetics regulate centromere formation and kinetochore function.
    Gieni RS; Chan GK; Hendzel MJ
    J Cell Biochem; 2008 Aug; 104(6):2027-39. PubMed ID: 18404676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome.
    Bulazel K; Metcalfe C; Ferreri GC; Yu J; Eldridge MD; O'Neill RJ
    Genetics; 2006 Feb; 172(2):1129-37. PubMed ID: 16387881
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The dynamic nature and evolutionary history of subtelomeric and pericentromeric regions.
    Mewborn SK; Lese Martin C; Ledbetter DH
    Cytogenet Genome Res; 2005; 108(1-3):22-5. PubMed ID: 15545712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25.
    Ventura M; Mudge JM; Palumbo V; Burn S; Blennow E; Pierluigi M; Giorda R; Zuffardi O; Archidiacono N; Jackson MS; Rocchi M
    Genome Res; 2003 Sep; 13(9):2059-68. PubMed ID: 12915487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromosomal dynamics of human neocentromere formation.
    Warburton PE
    Chromosome Res; 2004; 12(6):617-26. PubMed ID: 15289667
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel sex differences in linkage values and meiotic chromosome behaviour in a marsupial.
    Bennett JH; Hayman DL; Hope RM
    Nature; 1986 Sep 4-10; 323(6083):59-60. PubMed ID: 3748181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Divergent patterns of breakpoint reuse in Muroid rodents.
    Mlynarski EE; Obergfell CJ; O'Neill MJ; O'Neill RJ
    Mamm Genome; 2010 Feb; 21(1-2):77-87. PubMed ID: 20033182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.