These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15388863)

  • 1. In silico protein design by combinatorial assembly of protein building blocks.
    Tsai HH; Tsai CJ; Ma B; Nussinov R
    Protein Sci; 2004 Oct; 13(10):2753-65. PubMed ID: 15388863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical protein folding pathways: a computational study of protein fragments.
    Haspel N; Tsai CJ; Wolfson H; Nussinov R
    Proteins; 2003 May; 51(2):203-15. PubMed ID: 12660989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructure design using protein building blocks enhanced by conformationally constrained synthetic residues.
    Zheng J; Zanuy D; Haspel N; Tsai CJ; Alemán C; Nussinov R
    Biochemistry; 2007 Feb; 46(5):1205-18. PubMed ID: 17260950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic distributions of hydrophobic amino acids allows the definition of fundamental building blocks to align distantly related proteins.
    Baussand J; Deremble C; Carbone A
    Proteins; 2007 May; 67(3):695-708. PubMed ID: 17299747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building blocks, hinge-bending motions and protein topology.
    Sinha N; Tsa CJ; Nussinov R
    J Biomol Struct Dyn; 2001 Dec; 19(3):369-80. PubMed ID: 11790137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current updates on computer aided protein modeling and designing.
    Khan FI; Wei DQ; Gu KR; Hassan MI; Tabrez S
    Int J Biol Macromol; 2016 Apr; 85():48-62. PubMed ID: 26730484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution-Inspired Computational Design of Symmetric Proteins.
    Voet AR; Simoncini D; Tame JR; Zhang KY
    Methods Mol Biol; 2017; 1529():309-322. PubMed ID: 27914059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial protein design strategies using computational methods.
    Kono H; Wang W; Saven JG
    Methods Mol Biol; 2007; 352():3-22. PubMed ID: 17041256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the computational complexity of protein folding via fragment folding and assembly.
    Haspel N; Tsai CJ; Wolfson H; Nussinov R
    Protein Sci; 2003 Jun; 12(6):1177-87. PubMed ID: 12761388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiempirical prediction of protein folds.
    Fernández A; Colubri A; Appignanesi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021901. PubMed ID: 11497614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and structural analysis of two designed proteins with 88% identity adopting different folds.
    Saravanan KM; Balasubramanian H; Nallusamy S; Samuel S
    Protein Eng Des Sel; 2010 Dec; 23(12):911-8. PubMed ID: 20952437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design.
    Ferruz N; Lobos F; Lemm D; Toledo-Patino S; Farías-Rico JA; Schmidt S; Höcker B
    J Mol Biol; 2020 Jun; 432(13):3898-3914. PubMed ID: 32330481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein design with fragment databases.
    Verschueren E; Vanhee P; van der Sloot AM; Serrano L; Rousseau F; Schymkowitz J
    Curr Opin Struct Biol; 2011 Aug; 21(4):452-9. PubMed ID: 21684149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo protein design. I. In search of stability and specificity.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stably folded de novo proteins from a designed combinatorial library.
    Wei Y; Liu T; Sazinsky SL; Moffet DA; Pelczer I; Hecht MH
    Protein Sci; 2003 Jan; 12(1):92-102. PubMed ID: 12493832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed combinatorial construction of chimaeric genes: general method for optimizing assembly of gene fragments.
    Saftalov L; Smith PA; Friedman AM; Bailey-Kellogg C
    Proteins; 2006 Aug; 64(3):629-42. PubMed ID: 16783818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.