BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 15388865)

  • 1. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme.
    Warwicker J
    Protein Sci; 2004 Oct; 13(10):2793-805. PubMed ID: 15388865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pKa predictions with a coupled finite difference Poisson-Boltzmann and Debye-Hückel method.
    Warwicker J
    Proteins; 2011 Dec; 79(12):3374-80. PubMed ID: 21661058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR; Zhu X; Klein MC
    Proteins; 2011 Dec; 79(12):3306-19. PubMed ID: 21910138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM
    Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing pKa computation in proteins with pH adapted conformations.
    Kieseritzky G; Knapp EW
    Proteins; 2008 May; 71(3):1335-48. PubMed ID: 18058906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the accurate first-principles prediction of ionization equilibria in proteins.
    Khandogin J; Brooks CL
    Biochemistry; 2006 Aug; 45(31):9363-73. PubMed ID: 16878971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.
    Stroganov OV; Novikov FN; Zeifman AA; Stroylov VS; Chilov GG
    Proteins; 2011 Sep; 79(9):2693-710. PubMed ID: 21769942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
    Jao SC; English Ospina SM; Berdis AJ; Starke DW; Post CB; Mieyal JJ
    Biochemistry; 2006 Apr; 45(15):4785-96. PubMed ID: 16605247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2006 Jul; 125(2):24911. PubMed ID: 16848615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving pKa calculations with consideration of hydration entropy.
    Warwicker J
    Protein Eng; 1997 Jul; 10(7):809-14. PubMed ID: 9342146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V; Dyson HJ; Bashford D
    Biochemistry; 1998 Jul; 37(28):10298-306. PubMed ID: 9665738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues.
    García-Mayoral MF; Pérez-Cañadillas JM; Santoro J; Ibarra-Molero B; Sanchez-Ruiz JM; Lacadena J; Martínez del Pozo A; Gavilanes JG; Rico M; Bruix M
    Biochemistry; 2003 Nov; 42(45):13122-33. PubMed ID: 14609322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-consistent field approach to protein structure and stability. I: pH dependence of electrostatic contribution.
    Dimitrov RA; Crichton RR
    Proteins; 1997 Apr; 27(4):576-96. PubMed ID: 9141137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of charge-charge interactions between residues adjacent in sequence.
    Loladze VV; Makhatadze GI
    Proteins; 2011 Dec; 79(12):3494-9. PubMed ID: 22072523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of opposite charges in protein electrospray ionization mass spectrometry.
    Samalikova M; Grandori R
    J Mass Spectrom; 2003 Sep; 38(9):941-7. PubMed ID: 14505321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.